
www.manaraa.com

www.manaraa.com

PARALLEL ALGORITHMS AND
ARCHITECTURES FOR DSP

APPLICATIONS

www.manaraa.com

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

VLSI, COMPUTER ARClllTECfURE AND
DIGITAL SIGNAL PROCESSING

Latest Titles

Consulting Editor
Jonathan Allen

Modelsfor Large Integrated Circuits, P. Dewilde, Z.Q. Ning
ISBN: 0-7923-9115-2

Hardware Design and Simuwtion in VALIVHDL, L.M. Augustin, D.C..Luckham,
B.A.Gennart, Y.Huh, A.G.Stanculescu

ISBN: 0-7923-9087-3
Subband Image Coding, J. Woods, editor,

ISBN: 0-7923-9093-8
Low-Noise Wide-Band Amplifiers in Bipolar and CMOS Technologies,

Z.Y.Chang, W.M.C.Sansen,
ISBN: 0-7923-9096-2

Iterative Identification and Restoration of Images, R. L.Lagendijk, J. Biemond
ISBN: 0-7923-9097-0

VLSI Design of Neural Networks, U. Ramacher, U. Ruckert
ISBN: 0-7923-9127-6

Synchronization Design for Digital Systems, T. H. Meng
ISBN: 0-7923-9128-4

Hardware Annealing in Analog VLSI Neurocomputing, B. W. Lee, B. J. Sheu
ISBN: 0-7923-9132-2

Neural Networks and Speech Processing, D. P. Morgan, C.L. Scofield
ISBN: 0-7923-9144-6

Silicon-on-Insulator Technology: Materials to VLSI, J.P. Colinge
ISBN: 0-7923-9150-0

Microwave Semiconductor Devices, S. Yngvesson
ISBN: 0-7923-9156-X

A Survey of High-Level Synthesis Systems, R. A. Walker, R. Camposano
ISBN: 0-7923-9158-6

Symbolic Analysis for Automated Design of Analog Integrated Circuits,
G. Gielen, W. Sansen,

ISBN: 0-7923-9161-6
High-Level VLSI Synthesis, R. Camposano, W. Wolf,

ISBN: 0-7923-9159-4
Integrating Functional and Temporal Domains in Logic Design: The False Path

Problem and its Implications, P. C. McGeer, R. K. Brayton,
ISBN: 0-7923-9163-2

Neural Models and Algorithms for Digital Testing, S. T. Chakradhar,
v. D. Agrawal, M. L. Bushnell,

ISBN: 0-7923-9165-9
Monte Carlo Device Simuwtion: Full Band and Beyond, Karl Hess, editor

ISBN: 0-7923-9172-1
The Design of Communicating Systems: A System Engineering Approach,

C. J. Koomen
ISBN: 0-7923-9203-5

www.manaraa.com

PARALLEL ALGORITHMS AND
ARCHITECTURES FOR DSP

APPLICATIONS

Edited by

Magdy A. Bayoumi

The University of Southwestern Louisiana

~.

" SPRINGER SCIENCE+BUSINESS MEDIA, LLC

www.manaraa.com

Library of Congress Cataloging-in-Publication Data
Parallel algorithms and architectures for DSP applications / edited by

Magdy A. Bayoumi.
p. cm. -- (The Kluwer international series in engineering and

computer science ; SECS 149. VLSI, computer architecture, and
digital signal processing)

Includes bibliographical references and index.
ISBN 978-1-4613-6786-4 ISBN 978-1-4615-3996-4 (eBook)
DOI 10.1007/978-1-4615-3996-4
1. Signal processing--Digital techniques. 2. Parallel processing

(Electronic computers) 3. Computer architectures. 4.lntegrated
circuits--Very large scale integration. 1. Bayoumi, Magdy A.
II. Series: Kluwer international series in engineering and computer
science ; SECS 149. III. Series: K1uwer international series in
engineering and computer science. kVLSI, computer architecture, and
digital signal procession.
TK5102.5.P352 1991
621.3822--dc20 91-26492

CIP

Copyright © 1991 by Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers in 1991
Softcover reprint of the hardcover 1 st edition 1991
AlI rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmi tted in any form or by any means, mechanical, photo-copying, recording,
or otherwise, without the prior written permission of the publisher, Springer Science+
Busines Media, LLC

Printed on acid-free paper.

www.manaraa.com

To the love of my life: Seham

www.manaraa.com

Contents

Preface .. ix

Chapter

1. Parallel Architectures for Iterative
Image Restoration
M. Sarrafzadeh, A. K. Katsaggelos and
S. P. R. Kumar .. 1

2. Perfect Shuffle Communications in
Optically Interconnected Processor
Arrays

Z. Guo and R. G. Melhem ... 33

3. Experiments with Parallel Fast Fourier
Transforms
G. Adams III, E. C. Bronson, T. L. Casavant,
L. H. J amieso1'l and R. A. Kamin III49

4. Fault-Tolerance for Parallel Adaptive
Beamforming
K. J. R. Liu and S. F. Hsieh 77

5. Parallel Computation of Fan Beam
Back-Projection Reconstruction Algorithm
in Computed Tomography
Wen-Tai Lin, Chung-Yih Ho and

Chi-Yuan Chin .. 113

www.manaraa.com

viii

6. AfTme Permutations of Matrices on
Mesh-Connected Arrays
Bjorn Lisper and Sanjay Rajopadhye 129

7. Architectures for Statically Scheduled
Dataflow
E. A. Lee and J. C. Bier 159

8. Design of Asynchronous Parallel
Architectures
Teresa H.-Y. Meng ... 191

9. Implementation of Multilayer Neural
Networks on Parallel Programmable
Digital Computers
S. Shams and K. W. Przytula 225

10. Implementation of Sparse Neural
Networks on Fixed Size Arrays

M. Misra and V. K. Prasanna Kumar 255

Index .. 281

www.manaraa.com

PREFACE

Over the past few years, the demand for high speed Digital Signal Proces­
sing (DSP) has increased dramatically. New applications in real-time image
processing, satellite communications, radar signal processing, pattern recogni­
tion, and real-time signal detection and estimation require major improvements
at several levels; algorithmic, architectural, and implementation. These perfor­
mance requirements can be achieved by employing parallel processing at all
levels. Very Large Scale Integration (VLSI) technology supports and provides
a good avenue for parallelism.

Parallelism offers efficient sohitions to several problems which can arise in
VLSI DSP architectures such as:

1. Intermediate data communication and routing: several DSP algorithms,
such as FFT, involve excessive data routing and reordering. Parallelism is
an efficient mechanism to minimize the silicon cost and speed up the pro­
cessing time of the intermediate middle stages.

2. Complex DSP applications: the required computation is almost doubled.
Parallelism will allow two similar channels processing at the same time.
The communication between the two channels has to be minimized.

3. Applicatilm specific systems: this emerging approach should achieve real-time
performance in a cost-effective way.

4. Testability and fault tolerance: reliability has become a required feature in
most of DSP systems. To achieve such property, the involved time
overhead is significant. Parallelism may be the solution to maintain ac­
ceptable speed performance.

Parallelism can be achieved at different levels; algorithms, architectures,
and implementation. Most DSP algorithms have inherent parallelism in com­
putation steps and data manipulation. The architecture band extends across
different classes of parallelism; (1) using a set of Von Neuman processors and
one or more shared memories, (2) achieving concurrency by employing an
asynchronous timing paradigm, (3) large grain computation on a few powerful

www.manaraa.com

x

processors (such as Intel iPSq, (4) fine-grain computation on many simple
processors (such as the Connection Machine), or (5) VLSI arrays which have re­
gular and local communication, local control and I/O restricted boundaries.
In achieving parallelism, several problems will arise which need to be tackled.

This book addresses several related issues and problems focussed on DSP
algorithms and architectures. The main topics which have been discussed in this
book are:

• CommunicRtion: This problem ranges from global but not very scalable solu­
tions, like busses, through somewhat more scalable solutions like interconnec­
tion networks, to local but scalable point-to-point connection schemes. Several
solutions have been offered which are DSP applications dependent; VLSI arrays
for matrix-based computations (Chapter 6), mesh, pyramid, and combinations
between them (Chapter 1), Orthogonal trees (Chapter 5).

• Emerging Technologies: Optical communication has been investigated with a
case study of shuflle-exchange topology (Chapter 2). Neural Network (NN)
technology provides a new paradigm for parallelism. Implementing NN on
parallel architectures is an essential step to achieve the expected performance.
Two case studies have been discussed; (1) Mapping multilayer perceptron NN
onto SIMD arrays with achieving high throughput and flexibility (Chapter 9),
and (2) mapping general NN onto fixed size array taking into consideration the
used learning model (Chapter 10).

• Design Environments Rnd ExperimentRtion: With the increasing complexity of
implemented systems, design environments, frameworks and simulation have
become necessary design tools. Two examples have been given; one for asyn­
chronous systems (Chapter 8) and another for shared memory architectures
(Chapter 7). Analyzing the performance of an algorithm running on specific
architectures can be used as guidelines for algorithm evaluation and implemen­
tation. As a case study, Fast Fourier Transform (FFT) algorithm has been
analyzed using the Connection Machine and the PASM computer (a research
computer at Purdue University) (Chapter 3).

• ApplicRtions: Three intensive computation case studies have been addressed;
(1) Back-Projection Reconstruction (BPR) for Computer Tomography,
(Chapter 5), (2) Adaptive Beamforming for Spatial Filtering > From an Array
of Sensors (Chapter 4), and (3) Iterative Image Restoration (Chapter 1).

• Algorithm Design: The central point is to take advantage of the substantial
parallelism of DSP algorithms and to obtain the maximum performance from
complex parallel architectures. Parallelism on the algorithmic level can be em­
ployed for fault-tolerance (Chapter 4). Devising mapping methodologies for al­
gorithms onto parallel architectures is gaining considerable interest; an example
of mapping matrix-based computation on VLSI arrays is discussed (Chapter 6).
These mapping methodologies are evaluated based on the implementation tech­
nology. In VLSI, AT2 can be used as a performance measure (Chapter 1).

www.manaraa.com

xi

The intent of this book is to be informative and stimulating for the
readers to gain knowledge and participate in fast evolving VLSI DSP field. It
establishes a good understanding of the strength of parallel DSP in different ap­
plications and on various architectures. The book can be used as a textbook for
research courses in VLSI, DSP, Parallel Processing, and DSP Architectures. It
can be used as a supplementary text for graduate and senior undergraduate
courses in VLSI Architecture and design for DSP applications. It can also serve
as a material for tutorials and short courses in VLSI DSP Architectures, DSP
systems design and Parallel Processing.

The idea of this book was motivated by a special session with the same
title "Parallel Algorithms and Architectures for DSP Applications" at IS CAS
1990 in New Orleans. That session was sponsored by the VLSI Systems and
Applications (VSA) Technical Committee of the Circuits and Systems Society.
I extend thanks to the members of this committee and to the speakers of that
session for supporting the idea of this book when it was in its infancy stage.
My sincere appreciation to the VLSI Signal Processing Technical Committee of
the ASSP society which provides a stimulating environment and a constructive
infrastructure for VLSI Signal Processing activities. Special thanks to the au­
thors who patiently spent considerable time and effort to have their research
work reported in this book. It has been a stimulating and constructive ex­
perience working with such a group of highly motivated scholars. The environ­
ment in the Center for Advanced Computer Studies has been dynamic, inspi­
ring and supportive for such project. My sincere thanks to Kluwer Academic
Publishers for the enthusiasm they showed about this book, to Bob Holland,
the editor and his assistant Rose Luongo for their support, encouragement, and
patience. They have established a friendly communication channel for me.

Finally, I would like to acknowledge my lovely wife, Seham, and my in­
teresting children; Aiman, Walid, and Amanda for their support and sacrifice
during the course of this project. Seham does not believe that I finished my stu­
dies yet because of my working at night and during the weekends. I appreciate
that she allows me to use our dining table as a desk because my office at home
is ultra crowded. My younger son, Walid, always calls me Dr. Magdy Bay­
oumi, to remind my wife.

Magdy Bayoumi

www.manaraa.com

PARALLEL ALGORITHMS AND
ARCHITECTURES FOR DSP

APPLICATIONS

www.manaraa.com

1
PARALLEL ARCHITECTURES

FOR ITERATIVE IMAGE RESTORATION

M. Sarrafzadeh, A. K. Katsaggelos and S. P. R. Kumar

Department of Electrical Engineering
and Computer Science

Northwestern University
McCormick School of Engineering and Applied Sciences

Evanston, illinois 60208-3118

Abstract

The recovery or restoration of an image that has been dis­
torted is one of the most important problems in image process­
ing applications. A number of algorithms or filters providing a
solution to the image restoration problem, have appeared in the
literature. Iterative restoration algorithms are used and analyzed
in this work, due to advantages they offer over other existing tech­
niques. Such algorithms, however, are generally computationally
extensive and time consuming, as is the case with most image
processing tasks. Therefore, there has been a natural interest in
improving the response times of the image processors to extend
the horizon of their applicability.

In this chapter parallel implementations of a class of iterative
image restoration algorithms are proposed. More specifically, we
propose Mesh, Pyramid, Mesh of Pyramids (MOP) and Pyramid
of Meshes (POM) implementations of the iterative algorithms
under consideration. MOPs and POMs are described as compo­
sitions of a Mesh and a Pyramid. Notions of network composition
will be introduced. Area-time bounds on the proposed implemen­
tations are established. The efficiency of the proposed VLSI algo­
rithms is evaluated by comparing the established bounds against
lower bounds on AT2, where A is the area of the VLSI chip and
T is its computation time. The lower bounds for AT2 which have
been obtained for these architectures, explicitly indicate the de­
pendence on the size of the filter support and the length of the
operands. Often it is possible to alter the mathematical structure
of the iteration to suit VLSI implementation, and gain efficiency
in the restoration problem. This is illustrated via an example of
a multi-step iteration for restoration.

www.manaraa.com

2

1 INTRODUCTION

The recovery or restoration of an image that has been distorted is
one of the most important problems in image processing applications
[1]. A number of algorithms or filters providing a solution to the im­
age restoration problem, have appeared in the literature [1]. Iterative
restoration algorithms are used in this work, due to certain advantages
they offer over other existing techniques. Among these advantages are
the following [2, 3, 4] : i) there is no need to determine or implement
the inverse of an operator; ii) knowledge about the solution can be
incorporated into the restoration process; iii) the solution process can
be monitored as it progresses; iv) constraints can be used to control
the effect of noise. Iterative restoration tasks are generally computa­
tionally expensive and time consuming, as is the case with most image
processing tasks. There has been a natural interest in improving the
response times of the image processors to extend the horizon of their
applicability. While early research in this direction focussed on exploit­
ing the structure of the computation on a single processor (e.g., FFT
algorithm), enhancing the speed by employing multiprocessors is cur­
rently of intense interest. Several image processing systems with mul­
tiprocessors, such as STARAN (a general purpose system employing
an interconnection network [5]) have already been implemented with
some success [6, 7]. The recent technological revolution, represented by
very-large-scale integration (VLSI), has generated considerable interest
in hardware implementation of complex operations (e.g., see [8, 9] for
application in signal/picture processing).

In general, algorithm design is the development of better procedures
to reduce the time to solve a given problem on a given computing
system. Exploitation of a multiprocessor system requires a radical de­
parture from the traditional Von Neumann environment. Detection of
parallelism in sequential programs is essential to the discipline. The
new challenge is to exploit properties of VLSI to build effective and
efficient computing structures. The fundamental criteria of optimality
are A, the area of the VLSI chip, and T, its computation time. The aim
is to design architectures that use these two resourcees in an optimal
manner.

In this paper we propose mesh, pyramid, and mesh of pyramids
(MOP) VLSI implementations of an iterative image restoration algo­
rithm. Notions of network composition will be introduced and MOP

www.manaraa.com

3

and POM will be described as "composition" of meshes and pyramids.
The restoration process is in essence a two-dimensional (2D) deconvo­
lution process. An iterative algorithm with first-order or linear rate
of convergence is considered in detail; it performs the deconvolution
iteratively, carrying out a 2D convolution in each step, eventually con­
verging to the original image.

The 2D convolution algorithms that have been proposed in the litera­
ture [8, 10, 11, 12] are not attractive in this context, since the image has
to be stored and convolved with a mask (in-place image) repeatedly till
convergence. This fact is kept in mind in studying the implementation
here. In addition, VLSI layout and area-time complexity of the im­
plementations are presented, along with lower bound analysis. While
mesh is an attractive implementation due to regularity, the mesh of
pyramids is shown to yield the fastest circuit.

This chapter is organized in the following manner. In Sec. 2 the form
and the properties of the first-order iterative algorithm are described.
The VLSI implementations considered in this work, are presented in
Sec. 3. In Sec. 4 a multistep iteration is introduced. Finally, in Sec. 5
conclusions and current research directions are described.

2 ITERATIVE RESTORATION
ALGORITHMS

An appropriate mathematical model of the image distorting process is
the following [1]

y(i,j) = d(i,j)**x(i,j)+ v(i,j) (2.1)

where y(i, j), x(i,j) and v(i, j) are respectively the distorted and origi­
nal images and the noise, d(i, j) is the impulse response of the distortion
system and ** denotes 2D convolution. We assume, without lack of gen­
erality, that the original and distorted images are of the same size. By
stacking or lexicographically ordering M X N images into M N vectors,
Eq. (2.1) takes the following matrix form.

y = Dx + v, (2.2)

where D is a block-Toeplitz square matrix. It is mentioned here that Eq.
(2.2) represents a more general model, that is, when the degradation is

www.manaraa.com

4

space-variant, in which case D has no particular structure. Although
in the work presented in this paper the model of Eq. (2.1) is used,
our results can be extended to include the more general case of space­
variant degradations in a straightforward way. The image restoration
problem is then to invert Eq. (2.2) or to find an image as close as
possible to the original one subject to a suitable optimality criterion,
given y and D.

A number of approaches can be found in the literature for solving the
image restoration problem [1]. In this work we follow the regularization
approach presented in [3, 4]. Such an approach results in obtaining a
restored image by solving the following set of linear equations

(nTn + aCTC)x = nT y,

Ax = g,

(2.3)

(2.4)

where T denotes the transpose of a vector or matrix and a, the reg­
ularization parameter is inversely proportional to the signal to noise
ratio (SNR). The matrix C represents a high-pass filter, such as the 2D
Laplacian operator, which is chosen in such a way so that the energy
of the restored image at high frequencies (due primarily to the noise
amplification) is bounded [3,4].

Equation (2.4) may be solved through a variety of numerical tech­
niques. A successive approximations iterative algorithm is used in this
work for restoring noisy-blurred images, due to its advantages, as was
mentioned in the introduction [2, 3]. If Eq. (2.4) has one or more
then the minimum norm solution can be successively approximated for
o < 13 < 211AII-l, by means of the following iteration [2, 3]

Xo f3g

(I - f3A)Xk + f3g.

If Eq. (2.4) does not have a solution, then the following iteration

Xo = f3ATg

Xk+1 = (1 - f3AT A)Xk + f3AT 9

= WXk + J,

(2.5)

(2.6)

Where W = 1 - f3AT A and J = f3AT g, converges to its minimum
norm least squares solution x+, defined by x+ = A+g, where A+ is the

www.manaraa.com

5

generalized inverse of A, for 0 < (3 < 21IAII-2 • Algorithms (2.5) and
(2.6) exhibit linear rate of convergence, since it can be shown that [13]

(2.7)

where

(2.8)

Iterations with higher convergence rates are also studied in [13]. We
observe that iterations (2.5) and (2.6) have the same computational
form. Therefore, without lack of generality, in the following, we will
concentrate on iteration (2.6). The pointwise or unstaked version of
iteration (2.6) is useful in considering different ways in implementing
it in VLSI. When C in Eq. (2.3) models a space invariant constraint
system with impulse response c(i, j) (matrix C is approximated by a
block-circulant matrix), A in Eq. (2.4) is also a block-circulant matrix
and it is characterized by the impulse response a(i,j) = d(-i, -j) *
*d(i, j) + ac(-i, - j) * *c(i, j). Then, the pointwise version of iteration
(2.6) is given by

Xo(i, j) (3a(-i, - j) * *g(i, j)

Xk+l(i,j) = xk(i,j) + (3a(-i, -j) **[g(i,j) - a(i,j)**Xk(i,j)]

= [b(i,j) - (3a(-i, -j) **a(i,j)] **xk(i,j)

+ (3a(-i,-j)**g(i,j)

= w(i, j) * *Xk(i, j) + f(i, j) (2.9)

where w(i,j) = b(i,j) - (3a(-i, -j) * *a(i,j), f(i,j) (3a(-i, -j) *
*g(i, j) and b(i, j) is the 2D impulse function. Clearly, the pointwise
version of iteration (2.5) is obtained from iteration (2.9) by omitting
the convolution with a(-i, -j).

A priori knowledge about the solution can be incorporated into the
algorithm with the use of constraints [2]. Such a constraint can be rep­
resented by a projection operator which projects a signal onto a convex
set of signals with certain a priori known properties [14]. An example
of such a property is the positivity property, according to which each
entry of the vector x is a nonnegative number since it represents light
intensity. Then at each iteration the signal Xk is projected onto one
or more convex sets before it is used in generating the next estimate

www.manaraa.com

6

of the restored image Xk+1' When the projection operator represents
a pointwise or a local neighborhood based operation, it can be incor­
porated into the structure of the processor (to be presented in Sec. 3)
in a straightforward way. For ease of exposition we will assume in the
following that the projection operator is the identity.

3 VLSI IMPLEMENTATIONS

In this section, we will investigate the VLSI complexity of the iterative
image restoration algorithm of Eq. (2.9). Note that at each step of
iteration (2.9) a 2D convolution must be performed. However, since
a 2D convolution is required at each iteration step we must store the
entire image in the chip (informally, we have to "pay" for storing the
image xk(i,j)). Thus, we cannot employ previous two-dimensional con­
volution algorithms, since the I/O requirements would severe the per­
formance of the system (see section 3.2 below). We shall refer to the
two-dimensional convolution of interest, where the entire image must
be stored in the chip, as static two-dimensional convolution (S2DC).
It should be kept in mind that the overall objective of the algorithms
to be implemented is not convolution, but deconvolution instead, by
means of a series of convolutions.

First, we will briefly review the VLSI model of computation. Then
a lower bound on area-time measure of S2DC will be derived. Finally,
we propose mesh, pyramid, and mesh of pyramid implementations of
S2DC (see [15,16,17] for related results).

3.1 VLSI Model of Computation

In this section, first we review the VLSI model of computation and
discuss computational limits of VLSI. We will implement our image
restoration algorithm on a mesh, pyramid, and mesh of pyramid. Meshes
and pyramids have been proven effective for a number of problems in
digital signal processing. However, their combination has not been
studied (also, VLSI complexity of pyramid has not been investigated).

We briefly review the synchronous model of VLSI computation [18,
19,20]. A computation problem II is a Boolean mapping from a set of
input variables to a set of output variables. The mapping embodied by
II is realized by a Boolean machine described as a computation graph,
G = (V, E), whose vertices V are information processing devices or

www.manaraa.com

7

input/output ports and whose edges E are wires. A VLSI chip is a
two-dimensional embedding ofthis computation graph according to the
prescriptions of the model. The model is characterized by a collection
ofrules concerning layout, timing, and input/output (I/O) protocol: in
addition, the model restricts the class of computation graphs to those
having bounded fan-in and fan-out.

The layout rules are:

1. Wires (edges) have minimum width oX and at most l/ wires (l/ ~ 2)
can overlap at any point.

2. Nodes have minimum area coX 2 , for some c 2: l.

No loss of generality is incurred if the layout is restricted to be an
embedding of the computation graph in a uniform grid, typically the
square grid: the latter is the plane grid, the vertices of which have
integer coordinates (layout grid).

The timing rules specify that both gate switching and wire propa­
gation of a bit take a fixed time TO (hereafter, assumed equal to 1; see
[21] for validity of the unit-delay model), irrespective of wire length
(synchronous system). In addition, the I/O protocol is semellective
(each input is received exactly once), unilocal (each input is received
at exactly one input port), and time- and place-determinate (each I/O
variable is available in a prespecified sequence at a prespecified port,
for all instances of the problem). Two other types of I/O protocol con­
straints are normally considered: the word-local assumption and the
word-serial assumption. An I/O protocol is word-local if, for any cut
partitioning the chip, o(s) input (output) words have some bit entering
(exiting) the chip on each side ofthe cut [22], where s is the input size.
This constraint is used in the derivation of the AT2 lower bound and
is adhered to in the construction of the upper bounds (designs). An
I/O protocol is word-serial if, at any time instant, o(s) input (output)
words have some, but not all, of their bits read (written). This con­
straint is used in the derivation of the A lower bound and is adhered
to in the construction of the minimal area circuit.

3.2 Lower Bound

Thompson [18, 23] established a now widely-used technique [20, 21, 22,
23] for obtaining area-time lower bounds by quantifying the informa­
tion exchange required to solve the problem II. (Also, see [24] for a

www.manaraa.com

8

generalized approach). This quantity, denoted by 1, is defined as the
minimum number of bits that two processors must exchange in order
to solve II when exactly half of the input variables of II are available
to each processor at the beginning of the computation.

More formally, consider a problem I1(8), where 8 is the input size and
a chip Crr with area A that is capable of solving II in time T. Consider
a cut that partitions Crr into the left side L and the right side R, such
that each side reads about half of the input (Le., 8/2 - 0(8», as shown
in Fig. 1a. The two processors, PL and PR, associated respectively
with Land R cooperate to solve II(s) (see Fig. 1b). We denote by
1(s) the number of bits that PL and PR communicate to solve II(s).
Clearly, I(s) depends on the distribution of input/output bits between
PL and PR, and this, in turn, depends on input/output protocol of Crr.

The history of the computation performed by Crr can be modeled
with an area-time solid, as shown in Fig. 1c. The communication
channel between PL and PR is represented by rectangle F (dashed line)
that transects the longer of the two area dimensions. Thus, F has sides
of length T and (at most) .JA. So AF, the area of F, is at most .JAT.
If I(s) bits must flow across this channel then AF = 0(1(8». Hence,
we obtain

.JAT = 0(1(8». (3.1)

With a suitable change in I/O protocol semantics [22], information
exchange arguments also give lower bounds on area, namely, A = 0(1)
[12].

Consider an instance of a generalized two-dimensional convolution
given by any two matrices ANxN and B(2P+I0[249z)X(2P+1), where each
element is represented by O(b) bits. As shown in [12], any VLSI chip
that computes a two-dimensional convolution of A and B must satisfy
1 = O(NPb). Thus, AT2 = 0(N2P2b2),A = O(NPb), and (due to
bounded fan-in) T = O(log(Nb», assuming N ~ P.

In static two-dimensional convolution (S2DC) A = 0(N2 b), by defi­
nition, and T = O(logPb). Clearly, AT2 = 0(N2P2b2), for this bound
has been established for an arbitrary two-dimensional convolution. Note
that due to area constraints we cannot employ previous designs with

area A = 0(N2 b) (e.g., designs proposed in [10, 11, 12]).

www.manaraa.com

s/2
bits

s/2
bits

s/2
bits

s/2
bits

9

a. Bisection of a chip b. Two-processor system

c. Area-time solid

Figure 1: AT2 lower bounds

www.manaraa.com

10

3.3 Mesh Implementation

Before we explain the architecture, the following point is worth not­
ing. Each step of the restoration algorithm (Eqs. 2.6 or 2.9) involves
convolution or matrix vector multiplication. The systolic implementa­
tion proposed in [[8], Ch. 12] for 2-D convolution converts the matrix
into a linear array, and does not appear suitable for image restoration
considered here.

The mesh implementation falls into the class of array processor ar­
chitectures that have been extensively proposed and implemented for
image processing tasks. See, for example, the cellular array machines
discussed in [8]. In recent years, very large array processor systems have
been built and reported. These include the 96x96 cellular logic image
processor, the 128 X 128 massively parallel processor, and the connec­
tion machine which has about 100,000 processing cells. In each of the
above implementations, each processor is substantially more powerful
than a processor in the restoration implementation described below.
The processors are organized as a two dimensional array. For conve­
nience we assume that there is one processor per pixel. Figure 2a,
depicts such a two-dimensional array, with one processor per pixel. A
256x256 picture requires 64K processors which do elementary compu­
tations that will be explained later. A smaller number of processors,
say one for each 4x4 square in the picture requiring 4K processors,
may be chosen. In this case each processor will he more complex. The
architecture described for the case of one processor per pixel can be
easily extended to the case of fewer processors. On the other hand, a
fixed aray of processors can be used in restoring an image of any size.
This can be done by partitioning the available image into subimages
and restoring each subimage separately. The overlap-save or overlap­
add block convolution technique needs to be implemented in this case
in order to avoid errors at the boundaries of each suhimage [25].

Here, we shall analyze VLSI complexity of the proposed implemen­
tations in the word model, where each word consists of one bit. There­
after, we will show how to generalize our design to the bit model, where
each word consists of b bits.

An implementation of iteration (2.9) (the pointwise version of Eq.
(2.6» is described in the following. We assume for simplicity that the
impulse response w(i,j) in Eq. (2.9) has support (2P + 1) X (2P +
1) = Q pixels. Each processor (i,j) corresponding to pixel (i,j) has

www.manaraa.com

11

Q
R

Q
D

2P+l

Q
u Q

L

2P+l ~I

Figure 2: Partition MJi,j)

a register to hold f(i,j), and two other sets of registers to hold the
weights w(i, m) for -P ~ l, m ~ P, and all the restored image values
in the (2P + 1) X (2P + 1) neighborhood of (i,j). The latter set of

registers is denoted by MJi,j). The weights and f(i, j), once loaded
into the processors, remain unchanged throughout the course of the
restoration computation. The contents of MJi,j) , however, change over
time in a manner to be described later. For the processors located P
pixels or less away from the boundaries of the image, certain of the
contents of MJi,j) will be fixed, representing the boundary conditions
necessary for each convolution at each iteration step. These boundary
values are usually set to be equal to zero but other scenarios can be
also considered (the circular convolution scenario, for example.)

Each step of the restoration algorithm can be implemented in two
phases: a communication phase followed by a computation phase. In
the communication phase, each processor sends and receives messages,
and thereby gathers the relevant partial results of the restored pixel val­
ues (i.e., the values of all neighbors with distance P or less) necesssary

www.manaraa.com

12

for the convolution in the computation phase. The obvious redundan­
cies present in processor (i, j) in transmitting the entire matrix M~i,j)
to all four of its n~i.ghbors, can be removed in several ways. One way
is to partition M~z'J) into four parts (QR,QD,QL, and Qu), as shown

in Fig. 2. Each partition represents a quadrant of M~i,j) with outer­
most row or column omitted. For example, the partition Q R of pro­
cessor (i,j) is the set of register values M;~i~~) where -P < 1 ~ 0 and
o ~ m ~ P. Each partition has P(P + 1) values. It is easy to see that, in
the communication phase, each processor needs to send only one parti­
tion to each processor. Specifically, the partitions QR,QL,QDand Qu
are respectively transmitted to the right, left, down, and up neighbors.
These transmissions in the communication phase can be completely
word-serial. This would require 2P(2P + 1) communication steps in
each communication phase, and number of wires connecting neighbor­
ing processors need only be 0(1). Alternatively, the transmissions can
be done on a part word-serial, part word-parallel basis as follows.
Communication phase for processor (i,j)

• step 0: send x(i, j)

For 1 ~ i ~ 2P - 1, in

• step i :

1. Copy messages received in step (i - 1) to relevant locations
in M~i,j) at distance i from the center.

2. Send the values at distance i from the center, in partition
Qm to the m-neighbor, where mE{R, L, D, U}.

In communication step i of the above process, the number of words
transmitted in parallel equals max{(i + 1), 2P}, if i $ P and equals
2P - i, if P < i $ 2P - 1. This process would require O(P) wires
for connecting neighboring processors, and the total time for a commu­
nication phase is O(P). If transmissions are completely word-parallel,
the wire-width required is O(P2), which would be higher than the sides
of the processor, and this would be inefficient. Following each commu­
nication phase, each processor performs the convolution computation
(Eq. (2.9)) locally.

In the above implementation, each of the N2 proceessors has (2Q + 1)
registers, Q multipliers, and O(logQ) adders. The width of the inter­
processor connections is O(P). Having O(P) connections between two

www.manaraa.com

13

adjacent processors, allows them to communicate O(P) words in 0(1)
time. Thus, assuming 0(1) area for each register, multiplier and adder,
the total area required is O(N P) X O(N P), that is, 0(N2 P2). It takes
O(P) time for each communication phase, 0(1) time to multiply, and
O(logP) time to add. Thus, AT2 = 0(N2P4) = 0(N2Q2). We employ
an optimal bit-multiplier for multiplying 2 b-bit numbers [26, 27], with
Al = b2/T? for TI€[O(logb), O(v'b)]. Essentially we place a bit-optimal
multiplier where we had a unit multiplier in the word-model. Thus,
the area of the unit multiplier is multiplied by Al and its time by Tl .
We conclude:

Theorem 1: A mesh implementation of S2DC works in O(PT?) time
and has area 0(N2P2b2/T?) for Tl€[O(logb),O(v'b)].

We can modify the above implementation in several ways. For ex­
ample, we can make the width of the interprocessor connection 0(1).
Doing so, reduces the area. However, the time will be increased. In
that manner, the interprocessor connection can be set to any value
X between 1 and P. Selecting different values of X offers a tradeoff
between area and time.

3.4 Pyramid Implementation

A pyramid architecture <.l>(N) consists of log4N4levels. At levell there
is an N X N array of processors interconnected as a mesh. At level
i, 2 ~ i ~ log4N4, there are N 2 /4 i - 1 processors interconnected as a
mesh; each processor is connected to 4 processors at level i - 1 (see Fig.
3a), as described in [28, 29]. An algorithm on a pyramid for solving
generalized two-dimensional convolution, and thus for solving S2DC,
has been proposed [29]. However, VLSI complexity thereof (e.g., layout
issues, bit complexity) has not been analyzed.

We briefly outline the S2DC algorithm of Chang et. al. (for details,
see [29]). Let X denote the N X N matrix with elements X(i,j) =
x(i, j), and W the (2P + 1) X (2P + 1) matrix with elements W(i, j) =
wei + P + 1,j + P + 1).

procedure Pyramid-S2DC(X,W);
begin ~(N) : a pyramid containing X and (N /(2P + 1))2

copies of W;
for i = 1 to Q pardo (* Q = (2P + 1)(2P + 1) *)

www.manaraa.com

14

a. A 4X4 Pyramid

b. Layout of a 4X4 Pyramid

Figure 3: A pyramid structure

base and
multiplier

www.manaraa.com

begin calculate X (a, b) using the third dimension;
shift X in peN)

end
end.

15

Calculation of each X (a, b) involves multiplying, element-by-element,
two arrays of size (2P + 1) X (2P + 1). This t ask can be accomplished
in 0(1) time, in parallel. The elements of the resulting array are added
using the "third dimension", that is, using the pyramid. These num­
bers can be added in O(log P) time in the word model. There are p2

elements that use the same sub-pyramid. Thus, as soon as one set
of element-by-element computation is finished, the next set will begin.
Pipelining the computation gives a total of 0(P2 + log P) time. Thus,
T = 0(P2).

Next, we shall focus on layout of a pyramid. At each level of <T>(N),
processors are interconnected as a mesh and each processor is connected
to four processors at the previous level (see Fig. 3b).

Each processor at level 1 contains a multiplier. Processors at level 2
to levellog(2P+ 1) contain an adder and a broadcaster. (Hereafter, we
shall use loga to mean lOg4 a). Numbers are multiplied at levell, added
at level 2 to levellog(2P + 1), and broadcasted from levellog(2P + 1)
back to level 1. In the word model, each multiplier and each adder
requires 0(1) area and operates in 0(1) time. Thus level i has height
Hi = Hi-d2, and since HI = 2N, then the total height is O(N).
Similarly, the total width is O(N), or A = 0(N2). We conclude that
AT2 = O(N2 P4), in the word model. Now, assume that each element
of X and W, is represented by b bits. Multipliers with AT2 = O(b2),
for multiplying two b-bit numbers are known [26, 27]. More precisely,
Al = 0(b2jTl) for TIE[O(logb),O(Vb)]. A serial adder, with area 0(1)
can be placed in each processor at level 2 to level log P. We conclude:

Theorem 2: A pyramid implementation of S2DC works in O(P2T't)
time and has area O(N2b2 jT't) for TIE[O(logb),O(Vb)].

We can insert more pyramids in the network to reduce the computa­
tion time while increasing the area. Indeed, we may start with a mesh
(described in subsection 3.3) and add pyramids (regularly) to it. The
more pyramids are added the faster is the computation and the larger
the area. Therefore, a "natural" tradeoff between area and time is in-

www.manaraa.com

16

troduced. The other extreme instance of the just described tradeoff
(mesh architecture being one of the extreme) is described in the next
subsection.

3.5 Fastest Circuit

In practice it is often desired to restore an image as fast as possi­
ble. Here, we will focus on designing a fastest circuit for static two­
dimensional convolution. As discussed earlier, the fastest circuit for
S2DC operates in o (log Pb) time (due to bounded fan-in).

Consider an N X N image X stored in an N x N mesh. Let Bi denote
an arbitrary (2P+1) X (2P+1) block of X. Each element of Bi (for all
i) is to be multiplied by an element of the coefficient matrix W, that is,
to obtain Bi(a,b)W(a,b), 1::; a,b ::; (2P+ 1). Finally, we must form
the sum Si = i:a,b Bi(a, b)W(a, b). The sum Si can be obtained in the
following manner. At a processor containing Bi (a, b) we store W(a, b)
and also place a multiplier. On the set of processors defined by Bi we
place a pyramid <Pi(2P + 1) with 10g(2P + 1) levels. Each processor at
level 2 to levellog(2P+ 1) contains an adder. In 0(1) time, in the word
model, we can form Bi(a,b)W(a,b), 1::; a,b::; (2P+1). In 10g(2P+1)
time, we can form Si, in the word model. As described in subsection
3.4, Si can be obtained in O(log(2P + l)b) time in the bit model.

If we place a pyramid <Pi(2P + 1) on each block Bi then all sums
can be obtained, in parallel, in O(log(2P + l)b) time (assuming each
processor contains the entire coefficient matrix). Thus, a fastest circuit
is obtained, as shown in Fig. 4. We shall focus on area complexity of
the proposed circuit.

First, we will consider the word model. Each base processor stores W
and thus requires O((2P + 1)2) area. Each pyramid <Pi(2P + 1), as de­
scribed in subsection 3.4, contributes O(2P + 1) lines to the width and
O(2P + 1) lines to the height. Consider an arbitrary vertical column
of the base mesh. There are (at most) N(2P + 1) pyramids using one
of the processors of this column. Each pyramid contributes O(2P + 1)
lines to the height (see subsection 3.4). Thus, all pyramids, collectively,
contribute O(N(2P + 1)2) lines to the height. Similarly, their contri­
bution to the width is O(N(2P + 1)2). As described in subsection 3.4,
multipliers and adders can be laid out within the same area-time.

www.manaraa.com

17

2X2 pyramid

Figure 4: A fastest circuit

Lemma 1: A mesh of pyramids implementation of S2DC works in
O(1og Pb) time and has area 0(N2 P4).

A modification of the proposed implementation yields improvement
on the area bound. Such a modification results by assigning one pro­
cessor to each .Jlog(2P + 1) X .Jlog(2P + 1) region of the image and
letting each such block use the same pyramid. Thus the area is reduced
by a factor of O(log P) and the time is increased by an additive term
of o (log P). That is, we obtain:

Theorem 3: A mesh of pyramids implementation of S2DC works in
O(logPb) time and has area 0(N2P4/10g Pb).

The just described architecture, although quite fast, is rather com­
plex. In the current VLSI technology, the implementation of such a
system, is not feasible, especially for large images. However, the pro­
posed implementation demonstrates what can be done with the future
technology. It also provides new insights into the complexity of S2DC.
Depending on the application and the technology, one of the proposed
family of architectures can be used.

Note that the AT2 bound of the mesh and pyramid is better than
that of the mesh of pyramids by a factor of 0 (log Pb). Although the

www.manaraa.com

18

a. mesh as a
super structure

2X2 pyramid

b. pyramid as a
super structure

Figure 5: Network composition

AT2 bounds of the mesh and pyramid are asymptotically equivalent,
the mesh AT2 bound has better constants. Furthermore, the maximum
wire length in the mesh architecture is 0(1), while the maximum wire
length in the pyramid and MOP architectures is O(P).

For all three designs the I/O time is O(N). Note that pyramid based
architectures are more suitable for our problem than hypercube or
mesh-of-trees architectures, since we only need "short-distance" com­
munications. That is, only processors at distance O(P) or less need to
communicate.

3.6 Composition of Networks

In subsection 3.5, we constructed a network that involved both the mesh
architecture and the pyramid. Here, we give a formal description of
such "involvement' See [30] for a detailed discussion. We consider one­
dimensional networks, that is networks that can be specified completely
by one parameter. Square mesh and pyramid are both one-dimensinal
networks. However, our discussion can be readily extended to higher

www.manaraa.com

19

dimension networks.
Consider two (one-dimensional) networks Nt(nt) and N t (n2), where

nt and n2 are the size of Nt and N2 respectively. A composition of Nt
and N2 is denoted by a four-tuple 1] = [Nt(nt), N 2(n2), Pt, P2]. Network
1] consists of Nt as a. super structure and a set of N 2' s. Copies of N2
are placed in Nt at every Pt units in one direction and P2 units in the
other direction.

Figure 5a shows a 4 x 4 mesh M(4) as a super structure. A collection
of 2 X 2 pyramids P(2) are repeated every 2 horizontal and every 2
vertical units. The same networks with the pyramid repeated every 1
unit is shown in Fig. 4. Fig. 5b contains a 2 x 2 pyramid as a super
structure collection of 2 x 2 meshes every 00 units (Le., there is only
one such mesh). Equivalently we could have denoted the network by
[P(2), M(2), 2,2] or [M(2), P(2), 00, 00].

The super structure tells us what kind of "global" communication
is being performed and the secondary structure reveals the type of
required "local" communication. Since in our S2DC problem, only
"local" communication is needed (Le., at unit 2P + 1 element arrays)
then it is appropriate to use a mesh as the primary structure and the
pyramid on the secondary structure. Networks with pyramid on the
primary structure and mesh on the secondary structure, that we call
pyramid of meshes, are not suitable for our problem.

General properties of network composition is currently under inves­
tigation.

4 A MULTI-STEP ITERATION AND IM-
PLEMENTATION

In the previous section, we analyzed various VLSI implementations of
an iterative restoration algorithm presented in Sec. 2. Often, it may
be advantageous to alter the mathematical structure of the iteration
itself to gain effectively in the restoration process. The algorithm of
Sec. 2 is a single-step iteration in the sense that the (partially restored)
image values at the current step depend only on the image values at
the previous step. In this section, we discuss a multi-step iteration al­
gorithm, which has a different mathematical structure and convergence
behaviour. Nevertheless, it is particularly suitable for the mesh imple­
mentation. To implement each step of the multi-step iteration requires

www.manaraa.com

20

.
• •

J • • w(l,l) • w(L,P)

.
+ ... + + ... + . .. , • w(P,P)

+
• ••• • •
• •• • •• w(2,2)

.

.•
w(L,P)

Figure 6: Decomposition of the imnpulse response of the restoration
filter

considerably less time than the single-step iteration. More specifically,
this reduction is proportional to the largest dimension of the support
of the impulse response of w(i,j) in Eq. (2.9).

4.1 Derivation

In this section we assume that the support of the impulse response of
the composite filter w(i, j) in Eq. (2.9) is rectangular of size (2L + 1) X

(2P + 1) pixels where L ~ P. This does not represent a deviation from
the presentation in Sec. 3 where w(i,j) had a square support, since
any square region of support can be treated as rectangular by padding
it with the appropriate number of zeros.

We propose the following additive decomposition of w(i, j)

w(i,j) = wl(i,j) + w2(i,j) + ... + wL(i,j), (4.1)

www.manaraa.com

21

where the functions wI(i,j),l = 1, .. . ,L are depicted in Fig. 6. Then
iteration (2.9) takes the form

xo(i,j) = /3a(-i, -j) **g(i,j)

xk(i,j) = w1(i,j)**Xk_1(i,j)

+ w2(i,j)**Xk-2(i,j) + ...
+ w2(i,j) **Xk-L(i,j) + f(i,j) (4.2)

or the following matrix-vector form

Xo /3AT 9

Xk W1Xk-l + W2Xk-2 + ...
+ WpXk-P + ... + WLXk-L + f, (4.3)

where the sequences w1(i,j), ... ,wL(i,j) are used in forming the ma­
trices WI ... , WL, respectively. Each of these matrices is block banded,
where each block is a banded matrix.

4.2 Convergence

The convergence of the single-step algorithm does not in general guar­
antee the convergence of the multi-step algorithm. In the following,
sufficient conditions for the convergence of the multi-step algorithm
are discussed. A sufficient condition for convergence of iteration (4.3)
to a unique solution for any Xo, . .. , X-L+1 is that [16, 31]

L

EIIWdl < 1. (4.4)
1=1

Since the contraction condition (4.4) is norm dependent [31], all useful
norms should be used in verifying (4.4). The form of this condition
with the use of the it, 12 and 100 matrix norms is considered next.

Matrices WI, 1 = 1, ... , L are block Toeplitz, therefore they are asymp­
totically equivalent to block circulant matrices [1]. The eigenvalues of
the W{ s (real eigenvalues since the W{ s are symmetric) are the values of
the 2-D Discrete Fourier Transform (DFT) of the wI(i,j),l = 1, ... ,L
in equation (4.1). In other words, in trying to verify (4.4) with the use
of 12 norms, we need to find the maximum of each individual 2-D DFT.
That is, condition (4.4) is translated into

L L
L maxn1 ,n2 Wt(n1, n2) = L p(WI) < 1 (4.5)
1=1 1=1

www.manaraa.com

22

where p(WI) denotes the spectral radius of WI, and W!(nl, n2) is the
2-D DFT ofwl(i,j) with nl = 21r/Nl and n2 = 21r/N2, where a N1 XN2
size DFT is assumed, with N1 ~ (2L+1) and N2 ~ (2P+1). Verification
of equation (4.5) is not an analytically straightforward task, since each
of the WI(n!, n2) obtains its maximum value at a different (n!, n2)
point. Therefore, no general conclusion can be reached and condition
(4.5) needs to be numerically verified for a given w(i,j).

A sufficient condition which is simpler to verify can be obtained by
considering the It and 100 norms. In this case

L L
IIWl11 = IIWlloo = E IIWdl1 = E IIWdloo, (4.6)

1=1 1=1

due to the symmetry of the W!s and the fact that W = EI WI. Con­
dition (4.4), due to equation (4.6) results in the following expression

IIWlll = IIWlloo
~~lw(i,j)1 < 1,

j j

(4.7)

which is very straightforward to be checked for a given d(i,j), c(i,j),{3
and Q. In verifying conditions (4.5) and (4.7) it should be kept in mind
that (3 is the only free parameter.

IfW is a contraction with respect to the 100 norm, that is, IIWlloo < 0,
where 0 < 1, a more powerful result than the convergence of iteration
(4.3) holds [32]. More specifically an asynchronous distributed imple­
mentation of the iterative algorithm (2.6), as described in Ref. [32] is
proved to converge to a unique solution. Furthermore, the notion of
a P-contraction [31, 32] can also be used in establishing sufficient con­
ditions for the convergence of the general case of a distributed asyn­
chronous iterative algorithm. However, if a mapping is a P-contraction,
then it is a contraction mapping with respect to the Zoo norm [31] and
the previously mentioned result holds.

Provided that an iterative algorithm converges, the next important
question is how fast is this convergence. For the single-step iteration
of equation (2.6), the convergence is linear, as expressed by Eqs. (2.7)
and (2.8). If A is invertible, then c in Eq. (2.8) is equal to the spectral
radius of W, denoted by peW). Then Ilxk - x*11 ::; p(W)k+t, where x*
is the fixed point of iteration (2.6). The multi-step iterative algorithm
has also linear convergence. It is shown ([31] p. 354) that if condition

www.manaraa.com

23

(4.4) is satisfied then the asymptotic convergence factor is strictly less
than one and it is equal to the spectral radius of the following matrix

H= (4.8)

o I o
Depending on the specific d(i,j),c(i,j),(3 and a, the spectral radii of
Wand H can be computed in order to compare the rate of convergence
of the multi-step and the single-step iteration.

4.3 Mesh Implementation

In contrast to the implementation described III Sec. 3.3, both com­

munication and computation take place in every clock cycle in the
implementation of the multi-step iteration. Each clock cycle k, which

is the time interval [k, k + 1), is assigned to be divided into two phases.
Computation (described below) takes place in the first phase which is
the interval [k, k + ..6..), with 0 < ..6.. < 1. In the second phase, interval
[k + ..6.., k + 1), the communication (to be specified below) takes place.

Let Mii,j)(l,m;t) denote the contents of the (l,m)th location of the

memory matrix Mii,j) at any time t. The computation performed in

cycle k by processor (i, j) is

P +P
L L Mii,j)(I,m;k)M~,j)(l,m)+f(i,j), (4.9)

m=-Pl=-P

where for convenience we have assumed that L = P. The result of
the above computation is copied onto the central location of MJi,j) ,
by the end of the computation phase (i.e., time k + .6.). This value
remains unchanged for the rest of the cycle k. All the other locations
(there are (2P + 1)2 - 1 = 4p2 + 4P of them) get altered during the
communication phase. The values transmitted by the neighbors during
the communication phase of cycle k are copied onto these locations.
For example,

M(Hl,j)(O o· k + .6.) -+ M(i,j)(1 O' k + 1) x , , x' , . (4.10)

www.manaraa.com

24

If there is no duplication of messages in the communication sequence,
then each ofthe eight neighbors transmits (4p2 + 4P)/8 messages (the
contents of a location) to a processor. In the following we describe a
communication pattern that avoids duplication.

For each processor (i, j), divide the matrix MJi,i) into eight octants,
as shown in Fig. 7 a. Th us for processor (i, j) , octant 1 is the set of
memory locations MJi,i)(l, m) where -P ~ 1 < 0 and 1 > mj for octant
2, the index values are -P ~ 1 < 0 with 1 ~ m and so on.

In the communication phase of each cycle, each processor transmits
the values (found at the end of the computation phase) in an octant
to a specific neighbor. Thus, each octant goes to one of its neighbors,
according to the following rule. Octant 1 is transmitted to the D neigh­
bor, which we shall denote by 1 -+ D. The other transmission rules are:
2 -+ DLj3 -+ Lj4 -+ ULj5 -+ Uj6 -+ URj7 -+ Rj and 8 -+ DR. In
other words, the octants 1 through 8 are transmitted clockwise, one
per neighbor, to each of the neighbors starting from 1 -+ D. The mes­
sages received by processor (i,j) are shown in Fig. 7b. Note that the
outermost locations of an octant need not be transmitted. In every
cycle, the received messages are immediately copied onto the relevant
local memory locations. For example, when the U neighbor sends the
contents of its location (l, m), it is copied onto location (1- 1, m) of the
receiving processor, Le.

MJi-l,j)(l, mj k +~) -+ M(i,j)(l- 1, mj k + 1). (4.11)

The above communication pattern includes vertical, horizontal, and
diagonal communication. To see the information transfer implied in
this communication pattern, consider the undirected graph of a two­
dimensional array of nodes, obtained from associating a node with each
processor, and an edge connecting two neighboring processors which
exchange messages. Then, as a consequence of the above described
communication, at the end of any cycle k,

(4.12)

and

(4.13)

where -p ~ 1 ~ P, -p ~ m ~ P, and where e is the shortest distance
in the graph between nodes (i, j) and (i + 1, m + j), which equals the

www.manaraa.com

octant 1

octant 2
octant 7

octant 5 octant 4

a. Octant assignment of local memory

I~

I~
I.i

DJV1~--

Lrt1l±.1
.... 1
.±

1 ,
I

h. Message transmission/reception pattern

Figure 7: Matrix Mii,j)

25

www.manaraa.com

26

Figure 8: A block diagram of a processor (i, j)

maximum of 1 and m. In other words, the restored value from a proces­
sor which is at a distance e away, arrives after a delay of e cycles. This
implies that the evolution of the restoration process can be represented
by the multi-step iteration (4.3) analyzed in subsection 4.1. A block
diagram of the processor in the architecture is given in Fig. 8. The var­
ious blocks are self-explanatory. The multi-step iteration can also be
implemented with 4-neighbor communication (transmitting quadrants
instead of octants), using the ideas of the 8-neighbor communication
described above. In this case the communication pattern is determined
by the partitioning of M~i,j) shown in Fig. 2. Note that when diagonal
are used in the mesh the computation is reduced at most by a factor of
2. Thus, in our asymptotic analysis the time complexity is not affected.

4.4 Performance

In the architecture explained above, each processor transmits a total
of 4p2 + 4P = (Q - 1) messages per cycle, where Q = (2P + 1)2 and
the length of each message equals the number of bits used to represent
a pixel. (If the template is rectangular i.e, P ¥= L, then the number of
messages per cycle is 4P L + 2(P + L).) The local memory requirement
is also proportional to the size of the template, being equal to 2Q.

www.manaraa.com

27

In the above implementation, the speedup of the restoration process,
in terms of the gain in rate of convergence, is proportional to the num­
ber of processor (NT). Notice that if only a single processor were to be
employed, then the computation involved in each step of iteration (2.6)
would require NT clock cycles (assuming that the convolution, such as
equation (4.9) required for each pixel can be done in one clock cycle).
Thus, significant speedups are possible by employing a large number
of processors. In general, if 12 represents the spectral radius of H in
equation (4.8), then the rate of convergence of the multi-step iteration
(implementation described above) with NT parallel processors is l!iT.
In other words, if NT clock cycles constitute one time period, then the
norm ofthe error at the end of k time periods Ilxk - x*11 is O(I;NT). In
contrast, the rate of convergence of the single-step implementation with
an array of NT processors is given by I~NT/L), where L is the length of
the (square) template and 11 is the spectral radius of W in equation
(2.6). In this case Ilxk - x*11 = O(,:(NT/L)). Therefore, in situations
where the template size is large, one can expect the multi-step iteration
implementation to be considerably faster than the single-step iteration
implementation (even if 12 is smaller than 11).

There are N2 processor each with constant area. Thus area is O(N2).
It takes one unit of time to multiply two numbers in the word model.
Thus, AT2 = O(N2) in the word model. As discussed in Sec. 3.3,
we obtain the following result in the bit model (for both diagonal and
non-diagonal communication).

Theorem 4: The multistep algorithm works in Tl time has area
O(~), for TI€[O(logb), ° (.Jb)]' where b is the operand size.

1

www.manaraa.com

28

5 DISCUSSION AND CONCLUSIONS

Mesh, pyramid, and mesh of pyramids implementations for an iterative
image restoration algorithm have been proposed. These implementa­
tions are based on a single step iterative algorithm. The efficiency of
the VLSI algorithms is judged by establishing lower bounds on func­
tions which capture an area-time tradeoff. The lower bounds for AT2
which have been obtained for these three architectures, explicitely in­
dicate the dependence on Q, the size of the filter support, and b, the
length of the operands. Clearly, the time of the MOP implementation
is by far superior than the mesh implementation. However, mesh has
an attractive VLSI implementation due to regularity.

As described in the text, our AT2 bounds are away from the lower
bound by a factor of O(P2). The derivation of architectures with opti­
mal AT2 is currently under investigation. It is also conceivable that by
using problem transformation techniques described in [22], tighter lower
bounds can be obtained. The VLSI implementation of iterative restora­
tion algorithms with higher convergence rates than the ones presented
here [13], and the investigation of convergence and implementation of
asynchronous iterative algorithms, are topics for future research.

www.manaraa.com

29

References

[1] H. C. Andrews and B. R. Hunt, Digital Image Restoration,
Prentice-Hall, 1977.

[2] R. W. Schafer, R. M. Mersereau and M. A. Richards, "Constrained
Iterative Restoration Algorithms", Proc. IEEE, Vol. 60, pp., 432-
450, April 1981.

[3] A. K. Katsaggelos, "Constrained Iterative Image Restoration Al­
gorithms", Optical Engineering, special issue on Visual Commu­
nications and Image Processing, Vol. 28, No.7, pp. 735-748, July
1989.

[4] A. K. Katsaggelos, J. Biemond, R. W. Schafer and R. M.
Mersereau, "A Regularized Iterative Image Restoration Algo­
rithm", IEEE Trans. Acoust., Speech, Signal Processing, Vol. 39,
No.4, April 1991.

[5] J. L. Potter, "The STARAN Architecture and its Application
to Image Processing and Pattern Recognition Algorithms", Proc.
Nat. Compo Conj., 1978.

[6] K.E. Batcher, "Design of a Massively Parallel Processor", IEEE
Trans. Comput., Vol. 29, pp. 836-840, 1980.

[7] W. D. Hillis, "The Connection Machine: A Computer Architecture
Based on Cellular Automata", Physica, Vol. 10D, pp. 213-228,
1984.

[8] S. Y. Kung, H. J. Whitehouse and T. Kailath, editors, VLSI and
Modern Signal Processing, Prentice-Hill, 1985.

[9] R. J. Offen, editor, VLSI Image Processing, McGraw-Hill, 1985.

[10] H. T. Kung and S. W. Song, "A Systolic 2-D Convolution Chip",
IEEE Com. Soc. Workshop on Computer Architecture for Pat­
tern Analysis and Image Database Management, pp. 159-160, Nov.
1981.

[11] H. T. Kung "Why Systolic Architectures?", IEEE Comput., Vol.
15, No.1, pp. 37-46, Jan. 1982.

www.manaraa.com

30

[12] I.-C. Wu Area-Time Tradeoffs in VLSI Algorithms, M.Sc. Thesis,
National Taiwan University, 1984.

[13] A. K. Katsaggelos and S. N. Efstratiadis, "A Class of Iterative Sig­
nal Restoration Algorithms", IEEE Trans. Acoust., Speech, Signal
Processing, Vol. 38, No.5, pp. 778-786, May 1990.

[14] D. C. Youla and H. Webb, "Image Reconstruction by the Method
of Convex Projections, Part 1-Theory", IEEE Trans. on Medical
Imaging, Vol. MI-1, No.2, pp. 81-94, Oct. 1982.

[15] A. K. Katsaggelos, S. P. R. Kumar and M. R. Samatham, "VLSI
Implementation of an Iterative Image Restoration Algorithm",
Pmc. 1986 Int. Conf. Sys. Man. and Cybern., Atlanta, GA, pp.
313-318, Oct. 1986.

[16] A. K. Katsaggelos and S. P. R. Kumar, "Single and Multistep
Iterative Image Restoration and VLSI Implementation", Signal
Processing, Vol. 16, No.1, pp. 29-40, Jan. 1989.

[17] A. K. Katsaggelos, S. P. R. Kumar and M. Sarrafzadeh, "Parallel
Processing Architectures for Iterative Image Restoration", Pmc.
of 1989 Int. Conf. on Acoust., Speech, and Signal Processing, pp.
2544-2547, Glasgow, Scotland, May 1989.

[18] C. D. Thompson, A Complexity Theory for VLSI, Ph.D. The­
sis, Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, PA, 1980.

[19] H. Abelson and P. Andreae, "Information Transfer and Area-Time
Trade-offs for VLSI Multiplication", Communications of the A CM,
23, pp. 20-22, 1980.

[20] R. P. Brent and H. T. Kung, "The Area-Time Complexity of Bi­
nary Multiplication", Journal of the ACM, 28, pp. 521-534, 1981.

[21] G. Bilardi, M. Pracchi, and F. Preparata, "A Critique and Ap­
praisal of VLSI Model of Computation", Pmc. CMU Conference
on VLSI Systems and Computations, 1981.

[22] S. W. Hornick and M. Sarrafzadeh "On Problem Transformability
in VLSI", Algorithmica, 2, pp. 97-111, 1987.

www.manaraa.com

31

[23] C. D. Thompson, "Area-Time Complexity for VLSI", Proceedings
of the 11th A nnual A CM Symposium on the Theory of Computing,
Atlanta, GA, pp. 81-88, 1979.

[24] G. Bilardi and F. P. Preparata, "Tessellation Techniques for Area­
Time Lower Bounds with Application to Sorting", Algorithmica,
VoL 1, No.1, pp. 65-91, 1986.

[25] D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital
Signal Processing, Prentice-Hall, 1984.

[26] K. Mehlhorn and F. Preparata, "Area-Time Optimal VLSI Integer
Multiplier with Minimum Computation Time", Information and
Control, VoL 58, pp. 137-156, 1983.

[27] G. Bilardi and M. Sarrafzadeh, "Optimal VLSI Circuits for Dis­
crete Fourier Transform", in Advances in Computing Research,
VoL 4, (F. P. Preparata, Editor), JAI Press, Greenwich, CT., pp.
87-101.

[28] C. R. Dyer, "A VLSI Pyramid Machine for Hierarchical Parallel
Image Processing", Proc. of Pattern Recognition and Image Pro­
cessing Conference, TX, pp. 381-386, 1981.

[29] J. K. Chang, O. H. Ibarra, T. C. Pong, and S. M. Sohn, "Two­
Dimensional Convolution on a Pyramid Computer", Proc. Int.
Conf. on Parallel Processing, pp. 780-782, 1987.

[30] M. Sarrafzadeh, S.P.R. Kumar, and A. K. Katsaggelos, "Parallel
Architectures for an Iterative Image Restoration Algorithm" , Proc.
Int. Symp. on Circuits and Systems, pp. 2605-2609, New Orleans,
LA, May 1990.

[31] J. M. Ortega and W. C. Rheinboldt, Iterative Solutions of Non­
linear Equations in Several Variables, Academic Press, NY., 1970.

[32] D. P. Bertsekas, "Distributed Asynchronous Computations of
Fixed Points", Math. Programming, VoL 27, pp. 107-120, 1983.

www.manaraa.com

2
Perfect Shuffle Communications

In Optically Interconnected Processor Arrays

Zicheng Guo and Rami G. Melhem

Departments of Electrical Engineering and Computer Science
University of Pittsburgh, Pittsburgh, PA 15261

Abstract

Two approaches are presented to perform the perfect shuffle communica­
tion in optically interconnected processor arrays. The arrays are interconnected
via row and column optical busses, with optical switches placed at the intersec­
tions of row and column busses. The two approaches differ in the time they take
and the switching complexity they require. They allow all algorithms, including
those for digital signal processing (e.g., FFT), which utilize the shuffle-exchange
communication structure to be efficiently executed on the optically intercon­
nected processor arrays.

1. Introduction

Because of its efficiency, the perfect shuffle communication has been used
in the design of many parallel algorithms, including FFT, sorting, matrix opera­
tions, and image computation [4,12,14,18,21]. It is desirable to be able to
emulate the perfect shuffle communication structure on a given parallel com­
puter since such emulation allows all algorithms designed for the perfect shuffle
to be executed on the parallel computer. Optical implementations of the perfect
shuffle using free space techniques have been proposed by several authors
[2,11]. In this paper we show how the perfect shuffle communication can be
accomplished using guided optics in optically interconnected processor arrays.
Due to their capability of pipelining messages on optical busses, these hybrid
optical-electronic multiprocessor architectures, called Array Processors with
Pipelined Busses (APPB), have been shown to achieve an asymptotically linear
(in number of processors on the bus) improvement in communication bandwidth
over conventional multiprocessor architectures with nearest neighbor or
exclusive access bus interconnections [7,8].

Message pipelining on optical busses is possible because optical signals
have two unique properties which are not shared by their electronic counterpart.

This work was partially supported by Air Force grant AFOSR-89-0469 and NSF grant MlP-8901053.

www.manaraa.com

34

;' /'

••• m • •• TI n-l

(a)

(c)

(b)

Figure I. (a) A processor array connected with a single optical bus.
(b) APPB with switches where each processor is coupled to four

optical busses. (c) Switch connections at each intersection of
row and column busses.

Namely, optical signal's propagation is unidirectional and has a precisely predi­
catable path delay per unit distance. Figure I(a) illustrates an array of n elec­
tronic processors connected by an optical bus (waveguide), where each proces­
sor is coupled to the bus with two passive directional optical couplers [9,20],
one for injecting optical signals on the bus, and the other for receiving from the
bus. As in the case of electronic busses, each node j communicates with any
other node i by sending a message to i through the common bus. However,
because optical signals propagate unidirectionally, a node j in the system of
Figure l(a) may send a message to another node i only if i > j. A message on
an optical bus consists of a sequence of optical pulses, each having a width w in
seconds. The existence of an optical pulse of length w represents a binary bit 1,
and the absence of such a pulse represents a O. For convenience, let Do be the
optical distance between each pair of adjacent nodes and 't be the time taken for
an optical signal to traverse the optical distance Do. To transfer a message from

www.manaraa.com

35

a node j to node i, i > j , the sending node j writes its message on the bus. After
a time (i - I)t, the message will arrive at the receiving node i, which then reads
the message from the bus. To facilitate our discussion, for the system in Figure
l(a) we define n't as a bus cycle, and correspondingly't as a petit cycle.

Assume the system of Figure l(a) is synchronized such that every proces­
sor writes its message on the bus at the beginning of a bus cycle and that the
optical distance D D is larger than the message length bwc" where b is the
number of binary bits in each message and c, is the speed of light in the
waveguide. Then all the processors can send their messages on the bus simul­
taneously , and all the messages will then travel from left to right on the bus in a
pipelined fashion without collision. Here by collision we mean that two mes­
sages sent by two distinct processors arrive at some point on the bus simultane­
ously. This is in contrast to an electronic bus, where writing access to the bus is
exclusive. In cases where the communication pattern is known to the receiver,
that is, the receiver knows who the sender is, which is true for most
communications/computations in SIMD architectures [19], a wait register in
each processor may be programmed such that it indicates the time at which the
processor should read its message from the bus.

Several other addressing mechanisms can be used for transferring mes­
sages on the optical bus. For example, a skip register may be used to count the
number of messages to be skipped before reading the right message [13]. This
mechanism relaxes the requirements for timing accuracy and for equal distance
between each pair of consecutive processors on the bus. In cases where the
communication pattern is unknown to the receiver, the destination address can
be included in each message. Coincident pulse techniques [3,10] provide a
mechanism for an all-optical encoding/decoding of destination addresses.

Connecting all processors in a system with a single optical bus, as shown
in Figure l(a), has the disadvantage that a message transfer incurs O(N) time
delay in an N -processor system. This delay is reduced to O(...fii) in the two­
dimensional APPB [7], where each processor is connected to four optical busses
as discussed in the next section.

2. Array Processors with Pipelined Busses Using Switches

In the two-dimensional APPB architecture each processor is coupled to
four optical busses, with two horizontal busses for passing messages horizon­
tally in opposite directions, respectively, and two vertical busses for passing
messages vertically in a similar way [7,8]. The two-dimensional APPB archi­
tecture achieves a significant reduction in the length of a bus cycle, however, it
may take two steps for two processors to communicate with each other. To be
more specific, a message has to be sent to and buffered at an intermediate pro­
cessor in the first step, and then relayed from that intermediate processor to its
destination in the second step. Such message relay reduces the communication
efficiency since it requires an optical-electronic-optical information conversion
at the intermediate processor.

www.manaraa.com

36

One way of dealing with this disadvantage of message relay is to use
2 x 2 optical switches. e.g .• Ti:LiNb03 switches [1. 17]. to connect row and
column busses. A 2 x 2 optical switch has two inputs. II and lz. which. depend­
ing on the value of the control signal C. can be directly or cross connected to
two outputs 01 and Oz. respectively (see Figure 2). These switches have been
used to implement interconnection networks [5.23]. memories [16]. and
counters [22]. In this paper they are used to switch an optical signal. say. from a
row bus directly to a column bus without requiring a relay by an intermediate
processor. The architecture of APPB with switches is schematically drawn in
Figure 1(b). where switch connections at each processor are shown in (c). For
an m x n APPB with switches a bus cycle is defined as (m + n)to

straight cross

Figure 2. A 2 x 2 optical switch and its state definition.

In APPB with switches. a switch may assume one of the two states
straight and cross as defined in Figure 2. Initially all switches are in state
straight. When a message switching is desired at some processor. a switch at
that processor must be set to the cross state. The state of a switch at a processor
(x. y) in an m x n APPB with switches is determined by a variable Sij (x • y).
O:C:;;x <m. O:c:;;y <no and i.j E (R.L.D.UJ. whereR.L.D. and U stand
for rightward, leftward. downward. and upward. respectively. For example.
SRD (x • y) is used to specify the control of the switch which guides optical sig­
nals in rightward-to-downward direction at processor (x. y). The value of
Sij (x • y) is a tuple (A., J..I.), where the integer A. specifies the time, in number of
petit cycles and relative to the beginning of a bus cycle, at which the switch is
set to cross, and the integer J..I. determines the time period, again in number of
petit cycles, during which the switch should remain cross. We assume that two
switches are used at each intersection of row and column busses. For example,
at the intersection of the rightward row bus and the downward column bus, the
two switches are SRD (x, y) and SDR (x , y). In this case one input of each switch
is left unused. Figure 2 shows the implementation of SRD (x ,y) where input lz is
not used. Note that if SRD (x ,y) = SDR (x ,y), then the two switches at the inter­
section of the rightward row bus and the downward column bus may be com­
bined into a single switch, thus reducing the hardware requirement by half.

A switch may be controlled in three different modes:

1) The switch is set to cross at the beginning of a bus cycle and remains at
cross throughout the entire bus cycle.

www.manaraa.com

37

2) The switch is set to cross in the middle of a bus cycle and remains at
cross thereafter in that bus cycle.

3) The switch is set to cross in the middle of a bus cycle, remains at cross
for a few petit cycles, and is then set back to its initial state before the end
of that bus cycle.

From the definition, for modes 1) and 2), we have A + ~ = m + n, and for
mode 3), A + ~ < m + n. These switching modes have different implementation
complexity and routing flexibility. Considering the number of switchings in the
middle of a bus cycle, the three modes require zero, one, and two switchings,
respectively. Thus the switching complexity of the three modes increases from
1) to 3). With the increasing complexity, the flexibility of these modes, in terms
of routing messages, also increases.

The switching mode I) can be used to accomplish some simple and useful
communication tasks, for example, matrix transpose [6]. In this paper, we
present two approaches to perform the perfect shuffle communication on APPB
with switches using modes 2) and 3). The first approach requires mode 2) and
takes two bus cycles. The second uses one bus cycle but requires the more com­
plex mode 3).

Message switching between row and column busses may cause message
collisions, and extra care must be taken to ensure collision-free message routing
when designing communications for APPB with switches. A sufficient and
necessary condition for collision-free communication in APPB with switches is
given in the following Lemma [7].

Lemma. Assume that the optical distance Do between two consecutive
processors is larger than the message length and that all processors start
sending their messages simultaneously. Then, two messages sent by two
distinct processors (a, b) and (c, d), respectively, passing processor
(x, y) on the same bus will collide if and only if

I a - x I + I b - y I = I c - x I + I d - y I (1)

As an example of message collision in APPB with switches, the two messages
A 1 and A2 in Figure l(b) traveling from (a, b) and (c, d) to (x, y) and (z, y),
respectively, are colliding on the downward bus at processor (x, y). Note that
for the Lemma to hold, it is neeessary that the two messages pass processor
(x, y) on the same bus. For example, if message A 1 in Figure 1 (b) is switched at
processor (c, y) from the downward bus to a row bus, it will not pass processor
(x, y). As a result, A 1 will not collide with A 2 even if Eq. (I) holds true. In the
following we present approaches to performing the perfect shuffle communica­
tion in APPB with switches and show that they are collision-free.

3. A Two-Cycle Approach to the Perfect Shuffle Communication

Consider an APPB with switches of size n x n where the processors are
numbered using row major indexing. To perform the perfect shuffle

www.manaraa.com

38

communication in this APPB, a processor i will communicate with processor
Shuffle (i), where Shuffle(i)=2i if O~i <n212, and Shuffle(i)=
2i mod n 2+ I otherwise [18]. In terms of row/column positions, a processor
(x, y) will communicate with Shuffle [(x, y)] defined as follows [15].

Shuffle [(x, y)] =

(2x,2y),

(2x+1,2y mod n),

(2x mod n, 2y+I),

O~x< -T,O~y<-T

O~x<-T'-T~y<n
n n (2)
"T~x<n,O~y< "T
n n

(2xmodn+I,2ymodn+I), "T~x<n'"T~y<n

From this definition, we can divide the messages in the shuffle communication
into four sets, M i , I ~ i ~ 4, according to their source position in the four qua­
drants specified in the above definition. That is, Mi is the set of messages with
source processors from quadrant i .

For the perfect shuffle communication, we choose to transmit messages
such that they will propagate in counterclockwise direction: Messages from M 1 ,

M 2, M 3, and M 4 are transmitted in downward-to-rightward, leftward-to­
downward, rightward-to-upward, and upward-to-leftward direction, respec­
tively. As an example, a message in M 1 will be written on the downward bus in
its source column, and then switched rightward at its destination row. Typical
message flows are shown in Figure 3(a) for messages in MI. Note that messages
from M 1 have their destinations scattered in all the four quadrants. For simpli­
city, we will depict the message flows as in Figure 3(b). Similar figures can be
drawn for other message sets. It should be clear that the messages in M 1 , M 2 ,

M 3, and M 4 will be switched by switches SDR, SLD, SRU, and SUL, respectively.

To show how each switch Sij (x ,y) should be controIIed, we consider
SDR (x , y). From definition (2), a message in M 1 from source processor (X, y)
has its destination row at 2X. Thus the distance covered on the downward
column bus by the message is 2X - X = X , which is numericaIIy equal to the
time, in number of petit cycles, at which SDR (2X ,y) should be set to cross.
That is, SDR (2X , y) = (X, Il). Or equivalently, SDR (x , y) = (x /2, Il), where x is
even. Using switching mode 2), we have Il = 2n - x 12. Similarly other switch
controls can also be determined. These are given in the following.

SDR (x ,y) = (f' 2n - f), x even, 0 ~ y < -1- (for M 1) (3a)

SLD(x,y)=(niY ,2n - niY), O~x<-T'y even (forM2) (3b)

SRu(x,y)=(~,2n -~), -T~x<n,y odd (forM3) (3c)

n-x-I n-x-l) dd n (ti) (Sudx ,y) = (2 ,2n - 2 ' x 0 '"T ~y < n or M 4 3d)

www.manaraa.com

Ml L L_ .. ------.
I
I

I I
I I

I I ,
I I
I L __
I --.. I

L _______ ~
I

I.....

(a) (b)

Figure 3. Typical message flows for M 1 in the perfect shuffle communication.
Arrowed curves start from the source quadrants of messages and end in the
destination quadrants. (a) Messages in M 1 have their destinations in all the

four quadrants. (b) A simplified representation of (a).

39

Thus these switch controls are defined such that if only a single processor
(x I y) is transmitting a message to processor Shuffle [(x, y)], then the message
will be correctly sent to a bus at Shuffle [(x,y)]. To receive the message, the
value to be stored in the wait register at processor Shuffle [(x, y)] can be com­
puted based on the Manhattan distance between (x, y) and Shuffle [(x, y)],
which can be determined from definition (2).

The perfect shuffle communication can be performed in two bus cycles.
In the first bus cycle, processors in quadrants 1 and 4 send their messages in
counterclockwise direction. The switch settings are as defined in Eqs. (3a) and
(3d). In the second bus cycle, processors in quadrants 2 and 3 send their mes­
sages in counterclockwise direction. The switch settings are as defined in (3b)
and (3c). Sij (x, y) = (0, 0) if not specified, that is, the switch will stay in
straight throughout the entire bus cycle. Typical message flows in the perfect
shuffle communication using this approach is shown in Figure 4.

Proposition 1. The perfect shuffle communication using two cycles is
collision-free.

Proof. Our proof is given for the first bus cycle. The case for the second
cycle follows similarly. It can be checked that messages from M 1 and M 4

do not travel in the same row or column. Thus these two sets of messages
cannot collide. Now consider the messages from M 1 which are switched
to the same row and thus might collide with one another after being
switched. Let Bland B 2 be two such messages which are propagating
from two distinct processors (a, b) and (e, n, respectively, to the same
destination row x, where x is even. Then from Eq. (2) these messages are
from the same source row x 12. Thus, we have a = e = x 12 and b *" f .
Assume that both Bland B 2 will pass processor (x, y) on the rightward
bus. Then we have b < y andf < y. Given these values, Eq. (1) does not

www.manaraa.com

40

--OJ
I
I
I

I

: :M. L _______ .

Cycle 1

Ml r--- ---
I
I
I
I

___ ___ -.J
M3

Cycle 2

Figure 4. Typical message flows in the perfect shuffle communication
using two cycles. Arrowed curves start from the source quadrants of

messages and end in the destination quadrants.

hold. That is, Bland B 2 do not collide. This completes the proof of Pro­
position 1. 0

This Proposition tells us that in two bus cycles, the perfect shuffle com­
munication can be performed in APPB with switches using switching mode 2).
The interested reader may verify that if mode 1) had been used in this approach,
message collisions would have occurred. Thus the simpler switching mode 1) is
not sufficient for the powerful shuffle communication. Does the more complex
switching mode 3) have any advantage over mode 2) in terms of performing the
shuffle communication? The answer is positive. In the next section we show
that using switching mode 3), the task can be accomplished in one bus cycle.

4. A One-Cycle Approach to the Perfect Shuffle Communication

In this section we show how the perfect shuffle communication can be
performed on APPB with switches using a single bus cycle. The idea is to have
all processors transmit their messages in the same bus cycle, instead of in two
cycles, but use the more complex switching mode 3) so that message collisions
cannot occur.

At the beginning of a bus cycle, all processors transmit their messages in
counterclockwise direction. The switch controls are as follows.

SDR(X,y) = (-T' I), x even, 0 ~ y < -T (for M 1) (4a)

SLD(X,y) = (niY, I), o~x < -T'y even (forM2) (4b)

SRU(X,y) = (~, 1), -T ~X < n,y odd (for M3) (4c)

Sudx,y) = (n-~-1 , I), x odd, -9: ~y < n (for M4) (4d)

If the setting for a switch Sij (x ,y) is not specified, then Sij (x , y) = (0, 0).

www.manaraa.com

41

Note that in this approach each switch will remain at the cross state for
one petit cycle, that is, Jl = 1. The reason for this will become clear in the proof
of Proposition 2 presented later. Typical message flows in the perfect shuffle
communication using one cycle is shown in Figure 5.

Mz

~~~~- -~~~~-~ 
I I I 
I I I 

: I : 

I 
I 

i ~ : 
'--~~-_~- _~~-_0 

M3 

Figure 5. Typical message flows in the perfect shuffle communication 
using one cycle. Arrowed curves start from the source quadrants 

and end in the destination quadrants. 

To prove that this approach guarantees collision-free communication, we 
need only to consider messages from two adjacent quadrants. Let us look in 
more detail at how messages in M 1 and M 2 may possibly interfere with one 
another (messages from other sets can be looked at similarly). From definition 
(2), messages in M 2 have their destination processors at only even columns. 
These messages will first propagate to the left on their source row busses, and 
then be switched downward at even columns. While messages in M 1 will first 
propagate downward in their source columns and then be switched rightward at 
their destination rows (even). Since messages in M 1 are from the first quadrant, 
that is, their source columns are from the first quadrant, messages from M 1 and 
M 2 can possibly interfere with each other on the downward bus only at columns 
y, where 0 ~y < nl2 and y is even. (See Figure 6.) Observe that messages in 
M 1 are injected directly on the downward bus at column y , while messages in 
M 2 are injected on their respective row busses at certain distances from column 
y and it will take certain amount of time for them to reach column y . Thus for a 
message, say A 2, in M 2 to collide with a message, say AI, in M 1, A 2 must be 
able to "catch up with" A 1 on the downward bus at column y. To prove that 
message collisions cannot happen, it suffices to show that no message in M 2 will 
be able to catch up with any message in MI. Or equivalently, Al has been 
switched out of the downward bus before A 2 catches up with it. We will prove 
in Proposition 2 that the condition in the Lemma that the two messages are pass­
ing processor (x, y) on the same bus does not hold. More formally, in the first 
quadrant, where 0 ~ x, y < n /2, if SDR (x, y) = (AI, 1) (switch control for M 1) 
and Sw (x, y) = (A2 , 1) (switch control for M 2), it will be proven that Al < A2. 



www.manaraa.com

42 

o 1 

0 

1 

2 

Row 
3 

busses 4 

5 

6 

7 

Column busses 

2 3 4 5 

,-- ----- ----
, Ml 

, ,-- ----- ----
Ml ' 

\ '---- -----:,- ----- -----
" :1- ----- -----
" I~--- -----

, , 
\.~---- ----

6 7 

Figure 6. Potential interference between messages in M 1 and M 2. 

Proposition 2. The perfect shuffle communication using one cycle is 
collision-free. 

Proof. First we show, using the previous definition of A 1 and A 2, that A 1 

has been switched out of the downward bus in column y before A 2 

catches up with it and that messages in M 2 are not switched out of their 
destination column y . 

From Eq. (4a), we have A.l = x/2, where x is even. Since x:S; n/2-1 in 
the first quadrant, we have x /2 :s; (n - 2)/4 if n /2 is odd, and 
x!2 :s; (n - 4)/4 if n!2 is even. That is 

~, { 
n-2 

Al = t:s; n-4 
~, 

Similarly it can be shown that 

n- ~, { 
n+2 

A.2=T~ n+4 
~, 

nodd 
"T 
n even "T 

-Todd 

-T even 



www.manaraa.com

Let LU2,l denote the delay, in number of petit cycles, between the times at 
which messages from M 1 and M 2, respectively, arrive at column y . Then 

LU2,l = 1..2 - 1..1 ~ 1 

Therefore the potential colliding messages in M 1 have been switched out 
of the downward bus at column y before they collide with those in M 2. 

Since any message in M 2 will arrive at column y at least one petit cycle 
after any message in M 1 is switched out of that column, by allowing 
SDR (x , y) to remain at cross for one petit cycle, i.e., by setting J.1 = 1, the 
switch will be set to straight again, thus reestablishing the path on the 
downward bus at column y for messages in M 2 when they arrive. There­
fore no message in M 2 is switched out of the downward bus at column y • 

Similarly it can be shown that in the fourth quadrant, messages in M 3 and 
M 4 will not collide and no message in M 3 will be switched out of its desti­
nation column. 

Next we show that in the second quadrant (the case for the third quadrant 
is similar), where situation is different from that in the first or fourth qua­
drant, no two messages A2 and A4, from sets M2 and M4, respectively, 
will collide. In the mean time, A4 should not be switched out of the left­
ward bus in their destination row x . 

Let SID(X,y) = (~, 1) (switch control for M~ and Sudx,y) = 
(switch control for M 4). Then it can be shown that 

and 

Thus 

{ 
n-2 

1..2 = ni' ~ --':-' 
4' 

{ 
n+2 

'1._ n-x-l ~, 
"4- 2 ~ n 

4' 

nodd 
"T 
-T even 

-Todd 

-T even 

~,2=~- A2~O 

(~, 1) 

That is, at least one message, say A 4 , in M 4 will arrive on the leftward 
row bus at some processor (x 1 , y 1) at the same time as a message, say A 2, 

in M 2. Will collision occur? No, since our switch settings can success­
fully split the two message A 2 and A 4 into different busses at processor 
(x 1 , Y 1). Figure 7 shows such a case, where A 2 and A 4, arriving at 
(Xl, Y1) simultaneously at time (n - y 1)/2 (which is the time at which 
SID (x 1 , y 1) is set to cross), are split into the downward and leftward bus, 
respectively. (Our routing approach has such capability of splitting simul­
taneously arriving messages at a processor because we deliberately chose 

43 



www.manaraa.com

44 

to transmit messages in counterclockwise direction. In other words, if the 
transmission had been clockwise, message collisions would have occurred 
at processor (x I ,Y I) in Figure 7.) It is obvious from Figure 7 that A 4 is 
not switched out of row x I, which is its destination row, at processor 
(XI, Y I). 

Figure 7. Two messages A2 and A4 arriving at processor (xl ,Y I) 
simultaneously are split into the downward and leftward bus, 

respectively, thus avoiding message collision. 

In fact A4 will not be switched out of its destination row XI at any other 
processor (XI, yz), where Y2 < Y I and Y2 is even. To show this, note that 
since Sw (x , y) = (0, 0) for all X and Y (that is, no message will be 
switched in leftward-to-upward direction), A4 may only be switched out 
of row XI> if possible, by SLD (XI, Y2). In the following we show that by 
the time A4 arrives at processor (XI, Y2), switch SLD (XI, Y2) is at the 
straight state. Specifically, if t4 is the time at which A4 arrives at proces­
sor (XI ,Y2) on the leftward bus, and t2 is the time at which SLD(XI ,yz) is 
set back to the straight state (after being at cross for one petit cycle), then 
we want to show that t4 - t2;;:: o. 
As mentioned previously, A4 arrives at processor (XI, YI) at time 
(n - Y 1)/2, which is equal to the time at which SLJ) (XI, Y I) should be set 
to cross. After an additional time Y I - Y 2 , A 4 will reach processor (x I ,Y 2) 
on the leftward bus. Thus t4 = {n - Y 1)/2 + Y 1-Y2. Since SLD (XI, Y2) is 
set to cross at time {n - Y z)/2, !l!ld remains at cross for one petit cycle, 
then t 2 = {n - Y 2)/2 + 1. Therefore 

n -YI n -Y2 YI-Y2- 2 
t4- t2= (---z- + YI - Y2)- (---z- + 1) = 2 

Since both Y I and Y 2 are even (see the condition in Eq. 4b) and Y I > Y 2 , 

we have Y I ;;:: Y2 + 2. That is, 

t4 - t2;;:: 0 

This completes the proof of Proposition 2. 0 



www.manaraa.com

4S 

This Proposition tells us that, using switching mode 3) in APPB with 
switches, the perfect shuffle communication can be performed in one bus cycle 
without message collision. 

S. Concluding Remarks 

We have presented two approaches to performing the perfect shuffle com­
munication on processor arrays interconnected with row and column optical 
busses, where optical switches are used to switch optical signals directly 
between row and column busses. The first approach uses two bus cycles, while 
the second approach uses one bus cycles but requires more complex switch con­
trols and is thus more difficult to implement. Both approaches are shown to be 
collision-free. 

These approaches can be used for emulating the shuffle-exchange net­
work of size n 2 on an APPB with switches of size n x n . Specifically, assume n 
is even, then the exchange communication is simply the communication 
between two adjacent processors on a row bus. Combining it with the perfect 
shuffle communication, we can emulate the shuffle-exchange network on APPB 
with switches such that any two neighboring processors in the shuffle-exchange 
network can communicate with each other using one or two bus cycles. Such 
emulation allows any DSP algorithms designed for the shuffle-exchange net­
work to be efficiently executed on APPB with switches. 

References 

1. R.C. Alfemess, L.L. Buhl, S.K. Korotky, and R.S. Tucker, "High-Speed 
ap-Reversal Directional Coupler Switch," Topical Meeting on Photonic 
Switching. Technical Digest Series, vol. 13, pp. 77-78, 1987. 

2. K.H. Brenner and A. Huang, • • Optical Implementations of the Perfect 
Shuffle Interconnections," Applied Optics, vol. 27, no. 1, pp. 135-137, 
1988. 

3. D.M. Chiarulli, R.G. Melhem, and S.P. Levitan, "Using Coincident Opti­
cal Pulses for Parallel Memory Addressing," IEEE Computer, pp. 48-57, 
1987. 

4. R. Cypher, JL.C. Sanz, and L. Snyder, "Hypercube and Shuffle­
Exchange Algorithms for Image Component Labeling," J. Algorithms, 
vol. 10, pp. 140-150, 1989. 

5. J.R. Erickson and H.S. Hinton, "Implementing a Ti:LiNb03 4 x 4 Non­
blocking Interconnection Network," SPIE Integrated Optical Circuit 
Engineering, vol. 578, pp. 201-206, 1985. 

6. Z. Guo, "Array Processors with Pipelined Busses and Their Implication 
in Optically and Electronically Interconnected Multiprocessor Architec­
tures," Ph.D. Thesis, Department of Electrical Engineering, University of 
Pittsburgh, 1991. 



www.manaraa.com

46 

7. Z. Guo, R.G. Melhem, R.W. Hall, D.M. Chiarulli, and S.P. Levitan, 
"Array Processors with Pipelined Optical Busses," Proc. 3rd Symp. on 
Frontiers of Massively Parallel Computation, pp. 333-342, 1990. 

8. Z. Guo, R.G. Melhem, R.W. Hall, D.M. Chiarulli, and S.P. Levitan, 
"Pipelined Communications in Optically Interconnected Arrays," J. 
Parallel and Distributed Computing, to be published. 

9. B.S. Kawasaki, K.O. Hill, and R.G. Lamont, "Biconical-Taper Single­
Mode Fiber Coupler," Optics Letters, vol. 6, no. 7, pp. 327-328, 1981. 

10. S.P. Levitan, D.M. Chiarulli, and R.G. Melhem, "Coincident Pulse Tech­
niques for Multiprocessor Interconnection Structures," Applied Optics, 
vol. 29,no. 14,pp.2024-2033, 1990. 

11. A.W. Lohmann, W. Stork, and G. Stucke, "Optical Perfect Shuffle," 
Applied Optics, vol. 25, no. 10, p. 1530, 1986. 

12. R.N. Mahapatra, V. Ashok Kumar, B.K. Das, and B.N. Chatterji, "Perfor­
mance of Parallel FFf Algorithm on Multiprocessors," International 
Con/. on Parallel processing, vol. III, pp. 368-369, 1990. 

13. R.G. Melhem, D.M. Chiarulli, and S.P. Levitan, "Space Multiplexing of 
Waveguides in Optically Interconnected Multiprocessor Systems," Com­
puter J., vol. 32, no. 4, pp. 362-369, 1989. 

14. M.C. Pease, "An Adaption of the Fast Fourier Transform for Parallel Pro­
cessing," J. ACM, vol. 15, no. 2, pp. 252-264, 1968. 

15. C.S. Raghavendra and V.K. Prasanna-Kumar, "Permutations on Illiac-IV 
Type Networks," IEEE Trans. Comput., vol. C-37, no. 7, pp. 662-669, 
1986. 

16. D.B. Sarrazin, H.F. Jordan, and V.P. Heuring, "Digital Fiber-Optic Delay 
Line Memory," SPIE Proc .• Digital Optical Computing II, vol. 1215, pp. 
366-375, 1990. 

17. R.V. Schmidt and R.C. Alferness, "Directional Coupler Switches, Modu­
lators, and Filters Using Alternating a~ Techniques," IEEE Trans. Cir­
cuits and Systems, vol. CAS-26, no. 12, pp. 1099-1108, 1979. 

18. H.S. Stone, "Parallel Processing with the Perfect Shuffle," IEEE Trans. 
Comput., vol. C-20, no. 2, pp. 153-161, 1971. 

19. Q.F. Stout and B. Wagar, "Intensive Hypercube Communication. Prear­
ranged Communication in Link-Bound Machines," J. Parallel and Distri­
buted Computing, vol. 10, no. 2, pp. 167-181,1990. 

20. M.S. Whalen and T.H. Wood, "Effectively Nonreciprocal Evanescent­
Wave Optical-Fibre Directional Coupler," Electronics Letters, vol. 21, 
no.5,pp. 175-176, 1985. 

21. CL. Wu and T.Y. Feng, "The Universality of the Shuffle-Exchange Net­
work," IEEE Trans. Comput., vol. 30, no. 5, pp. 324-332, 1981. 



www.manaraa.com

47 

22. A.B. Yadlowsky, "The Mock Counter: A Hybrid Optical-Electronic 
Counter Using Fiber Delay Line Memory," OCS Technical Report 88-04, 
University of Colorado at Boulder, 1988. 

23. T. Yasui and H. Goto, "Overview of Optical Switching Technologies in 
Japan," IEEE Commun., vol. 25, no. 5, pp. 10-15, 1987. 



www.manaraa.com

3 
EXPERIMENTS WITH PARALLEL FAST FOURIER TRANSFORMS 

+ George B. Adams nI, Edward C. Bronson, Thomas L. Casavant , 

Leah H. Jamieson, and Ray A. Kamin III 

School of Electrical Engineering 
Purdue University 

West Lafayette, Indiana 47907 

+Department of Electrical and Computer Engineering 
University of Iowa 

Iowa City, Iowa 52242 

INTRODUCTION 

VLSI technology has made feasible large-scale parallel processing systems. 
Challenges presented by such systems include how to design algorithms to take 
advantage of the substantial parallelism and how to obtain the maximum perfor­
mance from potentially complex parallel machines. In this paper we examine parallel 
algorithms for the fast Fourier transform. We give an overview of the algorithm 
structure for highly parallel FFfs then present the results of detailed experimental 
studies of implementing FFrs on two parallel systems: the PASM partitionable 
SIMD/MIMD prototype and the Thinking Machine's CM-2 massively parallel SIMD 
machine. 

The PASM system is a dynamically reconfigurable architecture designed to 
allow both SIMD and MIMD operation. FFfs have been implemented on the 16-
processor PASM prototype. Detailed execution time measurements using special­
ized timing hardware were made for complete FFf algorithms and for components 
of SIMD, MIMD, and barrier synchronized MIMD implementations. The com­
ponent measurements isolated the effects of floating-point arithmetic operations, 

This work was supported in part by the National Science Foundation under Grant Numbers CCR-8809600, 
ECS-8800910 and by the NSF Software Engineering Research Center (SERC). Portions of the work were 
performed while Adams and Kamin were summer visitors at the Research Institute for Advanced 
Computer Science located at NASA Ames Research Center, and while Casavant was at Purdue. 



www.manaraa.com

50 

interconnection network transfer operations, and program control overhead. The 
studies provide comparisons of the performance of the SIMD, MIMD, and barrier 
synchronized MIMD implementations and address issues including synchronization, 
movement to and from floating-point coprocessors, instruction access time, masking 
to enable and disable processing elements, and network setup and data transfer time. 

The CM-2 is a massively parallel SIMD machine. FFrs were executed on 
8192- and 32768-processor configurations of the CM-2. Key issues addressed in the 
experiments included processor utilization, memory usage, data transfer time as a 
function of message length, and the ratio of the FFr size to the number of processors 
used. The algorithms were designed for a supercomputing environment and were 
compared to the best existing FFr algorithms on the Cray-2, developed at NASA 
Ames Research Center. 

In the following sections we present an overview of the algorithm structure for 
highly parallel FFrs, then present the experimental results from the P ASM and 
CM-2 studies. We conclude by discussing the issues raised by the two studies. 

FFT ALGORITHMS 

The discrete Fourier transform (DFT) of an N-point sequence {sen»). 
O~n <N, is defined as: 

N-l 
S (k) = L s(n)e-j (27t1N)nk, O~k <N. 

,,=0 

Fast Fourier transform algorithms allow computation of the DFT in O(Nlog2N) serial 
operations. One formulation, the radix two decimation-in-frequency (DIF) algo­
rithm [5, 19], divides {sen)} into sequences {Sl (n)} equal to the first half of {sen)} 
and {s2(n)} equal to the second half of {sen)}. The DFT of the N-point sequence 
can be computed in terms of the two N I 2-point DFTs of the sequences 
{sl(n)+s2(n)} and {[sl(n)-s2(n)]WRr). where O~n <N12, WN=e-j (27t1N), and 
j=-f-:l. For N a power of two, this process is repeated log2N times. (If N is not a 
power of two, there exist techniques based on zero-padding or factorization that 
allow use of the radix two algorithms. Throughout the remainder of this paper we 
will assume that N is a power of two.) Fig. 1 shows a flow graph of the computa­
tions performed in an 8-point DIF-FFr. The algorithm consists of log2N stages; 
each stage consists of N 12 independent DIF-butterfly operations, shown in Fig. 2a. 
In general, for complex-valued inputs the butterfly entails one complex multiplica­
tion and two complex additions, corresponding to four real multiplications and six 
real additions. In the butterflies where the "twiddle factor" W~ is equal to ±l or ±j, 
the multiplication can be eliminated at the expense of identifying these butterflies. 

A similar derivation yields the radix two decimation-in-time (DIT) algorithm 
[5,19], in which the N-point input sequence {sen)} is divided into two Nl2-point 
subsequences {s"v",,(n)} and (Sodden»). corresponding to the even- and odd-indexed 



www.manaraa.com

Input 

s(O) 

s(l) 

s(2) 

s(3) 

s(4) 

s(5) 

s(6) 

s(7) 

Output 

S(O) 

S(4) 

S(2) 

S(6) 

S(1) 

S(5) 

S(3) 

S(7) 

51 

Fig. 1. Flow graph of an 8-point DIP FFf. 

AVX=A+B 

B~ Y=(A-B)W: 

(a) 

AyX~A+BW~ 

B~Y=A-BW: 
(b) 

Fig. 2. Butterfly operations for (a) DIP and (b) DIT FFfs. 

points in (s(n)}. The DFf of the sequence (s(n)} can be computed as 
S(k)=S • .,. .. (k)+W~Sodd(k) for Osk<N12 and as S(k+nl2)= S .. ve .. (k)-W~Sodd(k) 
for NI2Sk<N, where Seve .. and Sodd are the Nl2-point DFfs of (seve .. (n)} and 
(sodd(n)} respectively. As in the DIT algorithm, this process is repeated log2N 
times. Fig. 3 shows the flowgraph for an 8-point DIT-FFf algorithm in terms of the 
DIT-butterfly, which is shown in Fig. 2b. The number of arithmetic operations is the 
same as for the DIP-FFf. 

Numerous formulations of parallel FFf algorithms have been presented, e.g., 
[4, 10, 11, 18, 23]. The simplest case uses P =N 12 processing elements (PEs) to 
compute an N-point FFf. In the most straightforward implementation, the N 12 
butterflies at a given stage are performed simultaneously by the N 12 PEs. After each 
stage, butterfly outputs must be communicated to the appropriate PEs for the next 



www.manaraa.com

52 

Input 

s(O) 

s( 4) 

s(2) 

s(6) 

s(1 ) 

s(5) 

s(3) 

s(7) 

Fig. 3. Flow graph of an 8-point DIT FFT. 

Output 

S(O) 

S(1) 

S(2) 

S(3) 

S(4) 

S(5) 

S(6) 

S(7) 

stage of computations. By proper selection of which PEs perform which of the 
butterflies at each stage, the needed data transfers can be limited to instances of the 
cube interconnection function, defined as 

cubec(PII_l·. ·Pc+1PcPc-l·· ·Po) = PII-l·· ·Pc+1PcPc-l·· ·Po 

for 0:5 C < log2P, where P is the number of PEs, Pn-l ... P 0 is the binary representation 
of the PE's index or number, and Pc is the complement of Pc [20]. Thus, cubec 
specifies the connection between pairs of processors whose indices differ only in the 
cth bit position. The cube functions are the connections found in hypercube net­
works such as those in the Thinking Machines CM-2, Intel iPSC, and NCUBE 
machines, and form the basis for multistage networks such as those found in PASM, 
the BBN Butterfly, and the Ultracomputer. The computation of an 8-point DIT-FFT 
on 4 processors is shown in Fig. 4. The P =N 12-PE algorithm has a complexity of 
log2N arithmetic steps (butterfly steps) and log2N -1 data transfer steps. The algo­
rithm achieves an optimal speedup on arithmetic operations and it can be shown that 
it achieves the lower bound on the number of data transfer steps needed when the N 
input data points are assumed to be distributed evenly across the N 12 PEs. The algo­
rithm approach can be easily generalized to the case where P <N 12 by distributing 
the N 12 butterflies at each stage among the P PEs, so that each PE performs (N 12)/P 
butterflies at each stage. In the general case, the complexity will be (N 12P) log2N 
complex multiplication steps, (NIP) log2N complex addition steps, and 
(N 12P) log2P data transfer steps [10]. 



www.manaraa.com

PEo 
s(O) 

s( 4) 

s(2) 

s(6) 

s(l) 

s(5) 

s(3 ) 

s(7 ) 

stage 1 

cube 0 

transfer 

stage 2 

cube! 
transfer 

stage 3 

Fig. 4. Computation of an 8-point DIT -FFf on 4 PEs. 

53 

S(O) 

S(4) 

S(1) 

S(5) 

S(2) 

S(6) 

S(3) 

S(7) 

The use of N 12 PEs to implement an N-point FFf yields a "natural" mapping 
because of the N 12 independent butterflies computed at each FFf stage. It is also 
possible to use N PEs for the N-point FFf, by assigning the X and Y computations 
(see Fig. 2) to different PEs [12]. In this case, each PE initially holds one data point. 
Pairs of PEs will exchange data so that each member of the pair has the needed A 
and B butterfly inputs. Mter completion of the X and Y computations in all of the 
PEs, data exchanges align the inputs for the next stage of butterflies. As in the N 12-
PE algorithm, the needed transfers can be limited to the cube interconnection func­
tions. The actual time to perform the arithmetic steps in the N-PE implementation 
will depend on the extent to which the X and Y computations can be performed con­
currently. (This will be discussed in more detail in the description of the CM-2 
experiments.) The N-PE algorithm will incur an overhead of log2N transfer steps, 
compared to log2N - 1 for the N 12-PE algorithm. 

A common technique for reducing the arithmetic complexity of serial FFf 
algorithms is to use higher radix algorithms. In general, a radix-r algorithm for a 1-
dimensional FFf is obtained by recursively dividing the input sequence into subse­
quences of length r, and requires N 1 r butterfl y operations at each of the log, N 
stages. The savings does not necessarily carry over to parallel implementations. If 



www.manaraa.com

54 

each processor of an SIMD machine with N 12 processors performs one radix-2 
butterfly operation, then the total number of parallel arithmetic operations performed 
equals 1 OlogzN. Similarly, a parallel radix-4 algorithm using N 1 4 processors would 
require 341084N or 1710gzN parallel arithmetic operations. Consequently, when N 1 2 
processors are available fewer operations are required to use the radix-2 algorithm 
since 1000gzN < 1710gzN. 

In the following sections we describe the results of two detailed implementa­
tion studies. Both examine ways in which aspects of the implementation and of the 
target architecture affect the performance of the basic parallel FFf algorithm. 

EXPERIMENTS ON PASM 

Overview of the PASM Architecture 

PASM is a reconfigurable architecture in which the processors can be dynami­
cally partitioned to form independent virtual SIMD and/or MIMD machines of vari­
ous sizes. This section discusses relevant characteristics of the PASM architecture. 
Further details can be found in [21] and [22]. 

The PASM Parallel Computation Unit contains P PEs (numbered from 0 to 
P-I) and an interconnection network. Each PE is a processor-memory pair. PE 
memory is used by the PE CPU for data storage in SIMD mode and both data and 
instruction storage in MIMD mode. The Micro Controllers (MCs) are a set of Q 
microprocessors that act as the control units for the PEs in SIMD mode and orches­
trate the activities of the PEs in MIMD mode. Each MC controls P IQ PEs. A set of 
MCs and their associated PEs form a virtual machine. In SIMD mode, each MC 
fetches instructions and common data from its memory, executes the control instruc­
tions (e.g., branches), and broadcasts the data processing instructions to its PEs. In 
MIMD mode, each MC may coordinate its PEs using instructions and data from its 
memory. 

The experiments described here were performed on a 4-MC 16-PE prototype 
of PASM. The PE and MC CPUs are Motorola MC68000 microprocessors operat­
ing at 8 MHz. Each PE contains a Motorola MC68881 floating-point coprocessor 
[15], operating at 8 or 16 MHz. Communication with the coprocessor in the PE dur­
ing floating-point operations proceeds as with any peripheral. 

Each PE contains special purpose hardware timing circuitry. A Motorola 
MC68230 timer, enhanced with additional TIL counting logic to improve resolution, 
was used to count processor clock cycles with an accuracy of ± 125 nanoseconds. 
The timer can be started or stopped by writing to a timer control register. 

A simplified diagram of the structure of an MC is shown in Fig. 5. The MC 
contains memory from which the MC CPU reads instructions and data. Whenever 
the MC needs to broadcast SIMD instructions to its associated PEs, it first sets the 
Mask Register in the Fetch Unit to specify which PEs will execute the instructions to 



www.manaraa.com

MCCPU 

MC 
Memory 

r-------------------------------------------, , , 

Controller Fetch U nit 

Mask - Memory 
Register 

FIFO - Queue I-

~-------------------t------------------
toPEs 

, , 
_____ ..1 

Fig. S. Simplified MC structure with emphasis on the Fetch Unit. 

55 

follow. The MC then writes a control word to the Fetch Unit Controller to specify 
the location and size of a block of SIMD instructions in the Fetch Unit Memory. 
The Fetch Unit Controller moves this block into the Fetch Unit FIFO Queue. The 
current value in the Mask Register is enqueued along with each SIMD instruction. 

A PE obtains SIMD instructions by performing an instruction fetch from a 
reserved PE memory area called the SIMD instruction space. Whenever logic in the 
PEs detects an access to this memory, a request for an SIMD instruction is sent by 
the PE to the Fetch Unit. When all enabled PEs have issued a request, the instruc­
tion is released by the Fetch Unit and the PEs can execute the instruction. Disabled 
PEs do not receive the instruction and remain idle until an instruction is broadcast 
for which they are enabled. Switching from MIMD to SIMD mode only requires the 
execution of a jump instruction from an address in memory where MIMD instruc­
tions are stored to the PE SIMD instruction space. A switch from SIMD to MIMD 
mode is performed by the MC broadcasting a jump instruction with a target address 
in the PE' s MIMD space. 

The SIMD instruction broadcast mechanism can also be utilized for barrier 
synchronization [13, 17] of MIMD programs. When a program requires the PEs to 
synchronize, the MC instructs the Fetch Unit Controller to enqueue an arbitrary data 
word. When the PEs executing the MIMD progmm need to synchronize (e.g., 
before a network transfer), they execute a memory read operation to the SIMD 
instruction space. Because the PE hardware treats SIMD instruction fetches and data 
reads identically, the PEs will be allowed to proceed only after the Fetch Unit has 
released the enqueued data and all active PEs have read it from their SIMD instruc­
tion space. This synchronizes the PEs. The same hardware that provides for SIMD 
synchronization among PEs also provides a fast mechanism for barrier synchroniza­
tion because each barrier operation requires only a single SIMD instruction space 



www.manaraa.com

56 

read, regardless of the number of PEs involved in the barrier. 

The MC68000 processor can execute instructions from memory with different 
access times. The minimum memory read or write cycle time is four clock periods. 
Accessing slower memory will cause the generation of one or more processor wait 
states which will increase the instruction cycle time. Each wait state requires an 
additional clock cycle to perform a 16-bit read or write. Each PE contains 28K bytes 
of 0 or 1 wait state static RAM and 2M bytes of dynamic RAM that operates at about 
3 wait states. The Fetch Unit delivers data and instructions to the PEs with a delay 
of 2 wait states due simply to the component delays of the Fetch Unit hardware. 

The interconnection network for the PASM prototype is a circuit-switched 
Extra-Stage Cube network [1], which is a fault-tolerant variation of the multistage 
cube network. In order to communicate with another PE, the initiating PE must set 
up a path through the network. A path is established by first writing a PE routing tag 
to the network Data Transfer Register (DTR). The PE then sets a bit in a control 
register to instruct the network interface to interpret the value in the DTR as a rout­
ing tag. Byte or word data values written to the DTR will now be automatically sent 
through the network. The receiving PE reads the transferred data from its DTR. 
Upon completion, the sending PE writes to the network control register to close the 
path and free the network. 

PASM Experiments 

Implementation and Measurement Techniques. Three 4-PE parallel DIT-FFf 
programs, one 8-PE parallel DIT-FFf program, and two serial DIT-FFf programs 
were implemented and executed on PASM to study the architecture and examine the 
trade-offs between the different modes of parallel computation. One 4-PE 8-point 
SIMD program performs all FFf operations in SIMD mode. A 4-PE MIMD version 
calculates the butterfly operations in MIMD mode and polls the network to deter­
mine the status during network transfer operations. A 4-PE MIMD ("BMIMD" 
program uses barrier synchronization to align the operations of the PEs just prior to a 
network transfer in place of polling to test network status. The execution times for 
the component parts of these three 4-PE 8-point FFf programs and an additional 
serial 8-point FFf program were measured. An 8-PE SIMD 16-point FFf program 
and a serial 16-point FFf program were used to verify projected performance meas­
ures. Additional details on the PASM experiments can be found in [6]. 

All of the programs were written in MC68000 assembly language [14] as 
straight in-line code with no loops. This generated the fastest possible code and 
minimized issues of programming style from the architecture studies. Each program 
consists of an initialization phase, an FFf algoritlun phase, and an output phase. In 
the initialization phase, the MC and each PE pre-compute and store all necessary 
data in preparation for the timing of the FFf algorithm phase. This includes order­
ing and initializing the input data in PE memory; pre-calculating the PE masks used 
by the MC; pre-calculating the logical PE number, cube function network routing 
tags, and FFf twiddle factors in each PE. In the FFT algorithm phase, each PE 



www.manaraa.com

57 

obtains the input data from PE memory, computes the FFf, and stores the 
transformed data back to PE memory. The execution time and the transformed data 
are printed during the output phase. 

Execution times were measured in clock cycles using specialized PE timing 
hardware. Measurements were made by inserting instructions to start and stop the 
timers in the code before program assembly. When measuring the execution time of 
a complete FFf program the timers were always started and stopped simultaneously 
in SIMD mode. The measured times for SIMD mode operations agreed within 1 
clock cycle across all PEs. In MIMD mode, since each PE timer was started and 
stopped independently, the measured execution times across the PEs varied. The 
timer overhead was measured and subtracted from the experimental program execu­
tion times. 

On the PASM prototype, the origin of PE instructions influences the execution 
time of a parallel program. For example, measurements have shown that PE instruc­
tions will execute faster when processing in MIMD mode and when fetched from 0 
wait state memory than when in processing in SIMD mode and fetched from the 
Fetch Unit Queue. Table 1 gives the measured PE execution times for 100 NOP 
instructions when fetched from various instruction stream origins. 

Table 1. Average PE execution times (x) and 
standard deviations (0') in JlS for 100 NOP instructions 

executed from various instruction stream origins. 

Instruction Execution Time Clock 
Stream Cycles per 
Origin x 0' Instruction 

dynamic RAM 89.161 0.389 7.13 
Fetch Unit queue 75.003 0.021 6.00 

1 wait state static RAM 62.479 0.047 5.00 
o wait state static RAM 50.000 0.000 4.00 

These execution times are linearly related as can be clearly seen from Fig. 6. This 
variation in instruction execution time is an artifact of the prototype hardware imple­
mentation and is not a general characteristic of the architecture or mode of process­
ing. In the experiments performed, the MIMD programs with instructions fetched 
from static memory enjoyed an artificial speed advantage over SIMD programs. A 
different hardware implementation could easily equalize the execution time of 
instructions fetched from different instruction stream origins. Since the focus of the 
study was on the relative performance of the various modes of operation, rather than 
the absolute execution times, the memory access time for all instructions was nor­
malized to 2 wait states (six clock cycles). This is equivalent to the PE SIMD 
instruction space access time and no normalization was necessary for SIMD 



www.manaraa.com

58 

Instruction Stream Origin 

dynamic RAM -

Fetch Unit queue -

1 wait state static RAM - •.. 
.. o wait state static RAM - •. 

I I I 
50 60 70 

• - 7.13 

•• - 6.00 

- 5.00 

- 4.00 

I I 
80 90 

Execution Time (1lS ) 

Clock 

Cycles 

per 

Instruction 

Fig. 6. PE execution times for 100 NOP instructions executed from 
various instruction stream origins. 

instruction fetches. All other memory access cycles were normalized. During pro­
gram execution, only static RAM memory was used within each PE. For SIMD 
mode, the static RAM was used only for data storage. To obtain the normalized exe­
cution time of any program component, the execution time was measured once using 
o wait state static RAM and again using 1 wait state static RAM. The difference 
between these two execution times is the time required for a single wait state per 
memory cycle. Adding the difference between these two execution times to the 1 
wait state execution time is equivalent to the program executing from 2 wait state 
memory. By using this 2 wait state normalized execution time, the time of an 
instruction fetch in SIMD mode frem the Fetch Unit Queue is equivalent to an 
instruction access in MIMD mode from memory. Direct comparison of program 
times was then possible. 

Experimental Results. The execution times for the 4-PE programs are shown in 
Fig. 7. The serial 8-point FFf executed in 1045.000 1lS. The components of the 4-
PE parallel programs and the single PE 8-point FFf program were also studied. 
These measurements included the execution time of register initialization, program 
control overhead, DIT-FFf stage 1, cube 0 interconnection function, DIT-FFf stage 
2, cube 1 function, and DIT-FFf stage 3 (see Fig. 4). The execution times for the 
components of each of the 8-point FFf programs are shown in Fig. 8. The length of 
each bar in Fig. 8 indicates the maximum execution time for each program com­
ponent The FFT stage execution time includes the time required to compute the 
floating-point butterfly operation plus the time required to move floating-point data 
to, from, and within the coprocessor. The network execution time is the time to 
transfer a complex floating-point value from the MC68000 data registers of the send­
ing PE to the data registers of the receiving PE. This includes the time to write the 
routing tag to the network, request a network path, transfer the data one byte at a 
time, reconstruct the transferred data, and drop the network path. A solid line across 



www.manaraa.com

59 

MIMD 1725.625 

SIMD 1 479.375 

BMIMD 1435.875 

I I I I 
0 200 400 600 800 

Execution Time (JlS ) 

Fig. 7. Execution time for 8-point FFf programs on 4 PASM PEs. 

a bar (MIMD and BMIMD Stage 3) indicates that while some of the PEs executed 
the program component at the maximum time indicated by the length of the bar, 
other PEs only required the time indicated by the solid line. This is due to the 
specific implementation of the FFf algorithm and will be described later. A dotted 
line across a bar (MIMD and BMIMD Network) indicates the minimum execution 
time for the program component. The measured execution times across all PEs lie 
between the times indicated by the length of the bar and by the dotted line. 

The program components in Fig. 8 account for a minimum of 93% of the exe­
cution time of each FFf program. The remaining execution time is required for pro­
gram initialization and control. Summing all of the component times for each pro­
gram gives execution times of 720.688 JlS for the MIMD version, 478.375 JlS for the 
SIMD program, 432.156 JlS for the BMIMD program, and 1045.000 JlS for the serial 
version. These sums differ from the measured execution times for the complete FFf 
programs by -0.68%, -0.21 %, -0.85%, and 0.00%, respectively. 

Discussion of PASM Experimental Results 

The high precision measurement techniques used in this study permitted a 
detailed analysis of the PASM architecture during execution of the components of 
each program. In this section, the differences in execution time for each of the pro­
gram components are discussed. 

Execution Times. Fig. 7 shows that the MIMD program has the longest execution 
time for any of the 4-PE parallel programs. This parallel implementation of the FFf 
algorithm has a speedup of 1.44 over the serial FFf program. The SIMD program 
requires 34% less time than the MIMD program with a speedup over the serial FFf 
of 2.18. The execution time of the BMIMD program is 9% less than the execution 
time of the SIMD program. The speedup for this program with respect to the serial 
program is 2.40. The reasons for the variation in execution times can be explained 



www.manaraa.com

60 

Serial I 

Stage 1 
MIMD I 
SIMD I 

BMIMD I 

Serial 1 

Stage 2 
MIMDI 

SIMD I 
BMIMDI 

Serial 1 

Stage 3 
MIMD I I 
SIMD I 
BMIMD I I 

MIMD : I 
Network SIMD I 

BMIMD I 

I I I I I I I I 
o 50 100 150 200 250 300 350 400 

Execution Time (liS) 

Fig. 8. Execution time for components of 8-point FFf programs on 1 and 4 PEs. 

by examining the individual program components shown in Fig. 8. 

In stage I, each program executes a W~ butterfly. In all modes, the butterfly 
requires two additions and two subtractions. The difference in the measured execu­
tion time for stage 1 is a result of the data movement from the coprocessor after the 
butterfly calculation. In the cube 0 network transfer that follows stage I, PEs 0 and 2 
transfer Y while PEs 1 and 3 transfer X. In MIMD and BMIMD modes, all PEs 
move the appropriate complex X or Y value from the coprocessor registers to the 
MC68000 data registers at roughly the same time. This requires two floating-point 
move operations. In SIMD mode, PEs 0 and 2 must first be enabled while PEs 1 and 



www.manaraa.com

61 

3 are disabled and the complex Y value is moved from the coprocessor. PEs 0 and 2 
are then disabled while PEs 1 and 3 are enabled and the complex X value is moved. 
The SIMD mode program requires two more move operations than the MIMD and 
BMIMD implementations. 

In stage 2, the difference in measured execution time between the SIMD and 
MIMD programs is even greater than for stage 1. One half of the PEs perform a 
W~ = 1 butterfly while the other half compute an W~ = j butterfly. Both of these 
butterfly operations require two floating-point additions and two floating-point sub­
tractions. In the MIMD and BMIMD versions, calculation of this stage is straight­
forward. Each PE moves the recently transferred data values to the coprocessor 
registers, computes the butterfly, and moves a single complex data item from the 
coprocessor in preparation for the cube 1 network transfer. The SIMD stage 2 opera­
tion is much more complex. Although W~ = 1 and W~ = j butterflies require the 
same number of arithmetic operations, the butterfly operations combine the A and B 
data values in a different order. However, it is possible to move the data into copro­
cessor registers in a sequence that allows the addition and subtraction operations to 
be performed simultaneously in all PEs. Additional masking and data movement is 
then necessary to prepare for the network transfer. Another reason for the longer 
stage 2 SIMD execution time is the necessity for an SIMD stage computation to 
leave the data that is not transferred in the correct floating-point registers across all 
PEs. This data movement is not necessary for the MIMD or BMIMD programs 
since each PE computes the stages independently and knows the storage locations of 
the data from the previous stage. 

In stage 3, PEs 1 and 3 compute butterflies with non-trivial twiddle factors 
requiring multiply operations. PEs 0 and 2 compute the less complex W~ and W~ 
butterflies. For MIMD and BMIMD mode. the execution time for the butterflies 
computed by PEs 1 and 3 is indicated by the length of the bar in Fig. 8. The execu­
tion time for PEs 0 and 2 is indicated by the solid line across the bar. In SIMD 
mode, all of the PEs execute butterflies using multiply operations, since this is less 
expensive than testing for the special case twiddle factors. Since half of the PEs 
transferred the A value in the preceding cube 1 function and the other half 
transferred the B value. extra processing is required by the SIMD stage 3 to enable 
and disable PEs and move the data values to different coprocessor registers. 

The execution time required for the interconnection network transfers varies 
widely among the three program implementations. The SIMD network operation 
requires the least amount of processing time. Since all PEs execute the network 
operations in lock-step fashion. the data transfers are synchronized with no need to 
test the network for data availability. In MIMD mode. each PE executes each 
butterfly independently and no implicit synchrony can be assumed when reaching the 
network transfer component of the program. Therefore. it is necessary for each PE 
to test the network (in a software polling loop) before transferring a data item and to 
wait on the network for a data item to become available. This testing and waiting (in 
software) results in high end-to-end network transfer times. Like the MIMD 



www.manaraa.com

62 

program, each PE executes each butterfly stage independently in the BMIMD ver­
sion. However, the BMIMD version performs a barrier synchronization just prior to 
the network transfer. Once all of the PEs are synchronized, the data is sent and 
received without testing the status of the network. The execution time for the 
BMIMD version is slightly greater than for the SIMD version. The difference is the 
time required for all PEs to read from the SIMD instruction space and synchronize. 

Since the execution time for the SIMD network transfer is less than the time 
for the barrier synchronization network transfer used in the BMIMD program, it 
would appear that a faster program could be constructed by using the SIMD network 
transfer. This is not the case. The overhead incurred by jumping to SIMD instruc­
tion space before the transfer and back to MIMD program space for the next 
butterfly stage exceeds the expected time savings. In addition, each time MIMD 
operation is resumed, it is necessary to test and branch in order for each PE to deter­
mine which butterfly operation it is to perform. The execution time overhead for 
these test and branch operations exceeds the time for testing and branching of an 
MIMD program that remains in MIMD mode and uses barrier synchronization. 

In summary, the difference between the SIMD and MIMD implementations 
can be attributed primarily to interconnection network time. The improvement 
gained with the BMIMD version is principally due to MIMD execution of arithmetic 
operations combined with barrier synchronization prior to data transfers. 

Because of the regular structure of the FFT algorithm, it is possible to derive a 
precise expression for the execution time of an N-point FFT program running on 
N /2 PASM PEs, N ~ 8. The stage times and network times measured for the 8-point 
FFTs can be used to construct an accurate prediction of the execution time on a 
larger system. A plot of the projected execution times is shown in Fig. 9. A detailed 
discussion of the extrapolation techniques and results can be found in [6]. 

The experiments on the PASM prototype clearly were not intended to demon­
strate the power of the small and relatively slow prototype system. Rather, they pro­
vide detailed experimental results on the performance implications of the various 
synchronization protocols and explored techniques for extrapolating results to a 
larger system. The algorithms were hand-tailored for the highest performance that 
the target machine could support. In the next section, similarly highly instrumented 
implementations of FFTs on the massively parallel Connection Machine are 
described. 

EXPERIMENTS ON THE CM-2 

Experiments in which high-performance FFT algorithms were implemented on 
the CM-2 were reported in [12]. The CM-2 performance was compared to the best 
existing FFT algorithms on the Cray-2, developed at NASA Ames Research Center 
[2, 3]. The results of these experiments are summarized here. 



www.manaraa.com

3.5 

3.0 

2.5 
Execution 

Time 2.0 

(ms) 
1.5 

1.0 

0.5 

,. 
, ,. " ,. 

Serial 

, ,. 
,. " 

, , 
, " 

, , 
, " 

, ,. 
, " 

ParaUel 

MIMD ,,' 

, , , " 
, , , 

Parallel 

Parallel 

BMIMD 

, , , 

8 16 32 64 128 256 512 1024 2048 

FFT Size 

Fig. 9. Projected execution times for an N-point FFf program on 1 (Serial) 
and N 12 (parallel) PASM PEs. 8 ~ N ~ 2048. 

Overview of the Connection Machine 2* 

63 

The CM-2 is an SIMD machine consisting of 64K (K=1024) PEs when fully 
configured [7]. The hardware with the 32-bit floating-point option consists of 2048 
chip-sets where a chip-set includes two processor chips (16 PEs each). 256 KBytes 
of bit-addressable memory (64 Kbits per PE). a Weitek 32-bit floating point unit. and 
a data transposer. A 64-bit floating point option is available. Control of the Connec­
tion Machine is handled by one or more front-end host processors. The host 
machine provides the user with a standard operating system. 110 facilities. and 
debugging tools. 

Physically, the 64K processors are divided into four groups of 16K PEs. Each 
group is controlled by a microsequencer that receives macroinstructions from the 
host machine, then decodes and broadcasts microinstructions to the individual PEs. 
These sequencers can operate independently to provide four users simultaneous 
access to the four quadrants of the CM-2. 

"Connection Machine is a trademark of Thinking Machines. Inc. 



www.manaraa.com

64 

Despite the seemingly large number of processors in the CM-2, many applica­
tions could benefit from additional processors. For this reason, the CM-2 software 
was designed to support virtual processors. The CM-2 uses time-slicing to simulate 
machine configurations of greater than the number of available physical processors. 
For example, implementing a 1,048,576 point FFf with one data point per PE on a 
64K PE system requires a virtual processor ratio of 16: 1. In this case, each physical 
processor does the work of 16 virtual processors. 

The floating-point hardware consists of one Weitek 3132 floating-point 
accelerator and one memory interface unit for every 32 PEs. The memory interface 
unit is used to convert bit serial data to word parallel data and vice-versa. When a 
floating-point add, subtract, or multiply instruction is to be executed, each enabled 
PE in the group of 32 PEs sends its first operand to its memory interface chip. These 
values are then transferred into the accelerator chip while the second operands are 
loaded into the memory interface unit. Next, the second operands are transferred 
into the accelerator and the floating-point operation is executed. Finally, the results 
are sent back to the memory interface unit and subsequently returned to the appropri­
ate PE memory. The complete cycle requires five stages. However, if a virtual pro­
cessor ratio of R is used, the process is pipelined and requires only 3R + 2 stages. 

The research reported herein began on a CM-2 with 8192 processors running 
Version 4.3 of the system software, and continued onto a configuration of 32768 pro­
cessors with floating-point hardware running Version 5.0 system software. The 
CM-2 and Cray-2 used are sited at the NASA Ames Research Center. 

Overview of the Cray-2 

The Cray-2 is a tightly coupled MIMD machine. A foreground processor han­
dles all operating system and I/O functions. Four high-speed vector processors share 
256 MWords (4096 MBytes) of common memory interleaved into 128 banks. Each 
processor contains eight 64-element vector registers, 16 KWords of local memory, 
and both vector and scalar functional units. The vector functional units or pipelines, 
reduce the overhead of vector operations, where a vector operation is an arithmetic 
function applied to an entire array of data. 

The high performance of the Cray-2 can be partially attributed to the fast 4.1 
nanosecond clock cycle time. As a consequence of this high clock rate, a potential 
bottleneck exists between the CPU and main memory. However, careful attention 
paid to algorithm design can minimize this bottleneck. 

FFTs on the CM-2 

Implementations. A radix-2 DIF-FFf algorithm that operates on N complex data 
points was implemented in C/Paris Version 4.3. C/Paris programs use standard C 
language statements intermixed with Paris (Parallel Instruction Set for the CM-2) 
instructions [8]. The algorithm was the basic parallelization of the DIP formulation 
outlined above. The twiddle factors were generated in a way compatible with the 



www.manaraa.com

65 

processing capabilities, memory capacity, and network speed of the CM-2. Initially, 
the twiddle factors are distributed among the processors according to the calculations 
required in the first stage. On subsequent stages, half of the twiddle factors are per­
muted each to two other processors. This method depends on a fast interconnection 
network. The twiddle factors are computed by the front-end processor and then 
loaded into the appropriate PEs. This program requires N processors and 
6B + 210g2N + 1 bits of memory per processor, where B is the number of bits used to 
represent a floating-point number. Alternative methods, such as the 
precomputing/storing of twiddle factors used in the P ASM implementation, rely on 
more memory than was available on the CM-2. 

The C/Paris program performs the I-D FFf with 2Nlog2N - 2N real multipli­
cations and 3Nlog2N - N real additions. Since these operations are done in parallel 
on N processors, the actual SIMD operation count is only 410g2N - 4 real multiplica­
tions and 610g2N - 2 real additions. The total number of complex multiplications 
required in the first stage of a DIF-FFf algorithm can be reduced from N /2 to 
N 12 - 4 by taking advantage of twiddle factors of ±l and ±j. However, on an SIMD 
computer all of the complex multiplications required in the first stage are executed 
simultaneously if N / 2 processors are used. Thus, it is quicker to actually perform 
the complex multiplications of ±1 and ±j rather than take time to disable certain pro­
cessors to avoid those multiplications. This rule holds as long as at least one non­
trivial complex multiplication was performed. 

After the installation of Version 5.0 of the system software, two additional 
C/Paris programs were written, eM _ 2fft and CM _lfft. CM _lfft requires N PEs 
for an N-point FFf while CM_2fft requires only N /2 PEs. In the case of eM_lfft, 
the butterfly operation is divided between two PEs. Because the CM-2 is an SIMD 
machine, this means that only half of the processors can be active at any given time. 
N /2 of the PEs will first compute the X butterfly output (see Fig. 2a), while the other 
N /2 PEs remain idle. Next, the context flag in each PE is inverted thereby enabling 
those PEs that were previously idle and vice-versa. The Y butterfly outputs are then 
computed. After a butterfly is completed, the data is realigned for the next stage of 
the FFf. Since the data are complex values, each stage requires one 64-bit transfer 
when using single precision (32-bit). 

As discussed in the overview of parallel FFf algorithms, the PE utilization for 
the N-PE eM_lfft will be only about 50%. Therefore, it appears possible to con­
struct a program that requires N /2 PEs and does not suffer any degradation in per­
formance. eM _ 2fft uses N / 2 PEs, and can therefore perform an FFf twice as large 
as is possible with eM_lfft. Unfortunately, for problem sizes less than this upper 
bound eM _ 2fft suffers from increased overhead because of the problem of aligning 
the data between stages. Specifically, N /2 PEs need to transfer their lower butterfly 
operation result, while the remaining PEs need to transfer their upper butterfly result. 
These two results must be sent to two different memory locations in the receiving 
PEs. In order to perform this permutation in just one interprocessor transfer, the data 
must be moved to a common source location. (The move can be done more quickly 



www.manaraa.com

66 

than a second interprocessor transfer.) This problem could be alleviated with the 
implementation of the CM _store _IL Paris instruction. This instruction, when 
implemented, will allow use of indirect addressing techniques. Currently, extra data 
shuffling must be done, resulting in slightly lower performance figures for CM 2m, 
in spite of the expected higher performance. -

Algorithm Fine-Tuning. Careful memory utilization can improve FFf performance 
on the CM-2 in two ways. First, minimizing the amount of memory used to compute 
the basic butterfly allows computation of a larger size FFf or else more small FFfs 
to fit in memory. Secondly, careful allocation of memory space can reduce the 
number of moves needed for relocating data within the memory of aPE. 

The memory usage in the one-point-per-PE algorithm, CM _1m, is minimal, 
consisting of space sufficient only to hold the two data values and a twiddle factor. 
The two-points-per-PE algorithm, CM_2m, benefits from a careful design, as some 
memory locations can be reused, reducing total memory requirements and eliminat­
ing some data movement within the memory of a PE. Fig. 10 shows the evolution in 
time of the memories of two communicating PEs for one iteration in the CM _ 2fft 
program. In one PE, the complex inputs to the butterfly are denoted A,B; in the 
second PE of the pair, they are denoted C,D. Vr denotes the real part of data value V 
and Vi the imaginary part. 

Fig. 11 shows the results of a test to determine the time required for a typical 
data transfer in the CM-2 as a function of message length. In Fig. 11 each PE, p, 
sends data to PE p + 1 modulo 8192, assuming 8192 physical PEs. This test illus­
trates an interesting anomaly regarding data transfers, namely, longer messages do 
not necessarily take more time to transfer. Since the pipeline through the hypercube 
router is 29 bits, the natural message length is 29 bits. Rather than collapse each 
pipeline for short messages, the router microcode copies the message into a tem­
porary location if it is less than 29 bits long, pads the message to 29 bits, and then 
sends the message. This copying accounts for the slight increase in delivery time as 
message length grows from one bit and the sudden decrease in delivery time for a 
message of 29 bits. Even though the FFf programs coded in this study operate on 
the real and imaginary parts of the complex data separately, the data transfers are 
treated as complex values because the time required to send a single 64-bit message 
is less than the time to send two 32-bit messages. 

CM-2 Performance 

One of the fundamental problems researchers encounter with parallel comput­
ers is the difficulty in adequately comparing the performance of machines of dif­
ferent architectures [9,16]. Indeed, this is the case for the CM-2 and Cray-2. An 
effort was made to keep many of the variables constant. Whenever possible, the 
CM-2 programs operate on double precision (64-bit) floating-point numbers to main­
tain consistency with the Cray-2 results. However, the floating-point hardware 
installed in the CM-2 at NASA Ames only has 32-bit capability. This should be kept 



www.manaraa.com

Memory 
Field 

1 Ar 

2 
3 
4 
5 
6 
7 
8 
9 

10 
CF 

1 
2 
3 
4 
5 
6 
7 

Aj 

Br 

Bj 

Wl r 

Wf 

1 

cr 

Cj 

Dr 
Dj 

Processors Sending (A-B)Wk 

• (A,-Bj)Wf (A,-Bj)W~ [(A-B)WAlj,) 
• - (Ar-Br)wf . -

f!J • 
Ar+Br 

Aj+Bj 

Ar-Br . 
A,-Bj . 

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 

Processors Sending C+D 

(Cr-Dr)W~ [(C-D)Wllr Cr+Dr 
(c,-D;)wf (Cj-Dj)W~ [(C~D)Wllj Cj+Dj 

• - ~ • \\'[(A-B)Wllr (Cr-Dr)W, . - '\[(A-B)Wil; . 
Cr-Dr 

67 

• Aj+Bj 
• 

Cr+Dr 
C;+Dj 

0 o 0 0 o 

[(A-B)Wllr 
[(A-B)WI[ 

[(C-D)W1ir 

[(C-D)W""lj; -

8 W~ 
9 -WT.---------------------------------------------------. 

10 ~'---------------------------------------------------. 
CF 1 1 1 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 111 1 

I 
o 

I 
5 

I 
10 

I 
15 

SIMD Instruction Step 

I 
20 

I 
25 

Fig. 10. PE active memory locations for CM _2fft as a function of the 
instruction being executed for a typical iteration. CF denotes the context flag, 

which determines whether a PE executes a given SIMD Instruction Step. 

in mind when evaluating these results. 

The FFf results are expressed in MFLOPS (millions of floating-point opera­
tions per second). Unfortunately, this unit of measure may lead to different interpre­
tations of the results. Since it has been shown that a complex-valued radix-2 FFf 
can be performed using only 5Nlog2N floating-point operations, this number will 
serve as the basis for comparisons. That is, no matter how many floating-point 
operations a specific complex-valued FFf program actually executes, the MFLOPS 



www.manaraa.com

68 

Time 
(jJ.sec) 

600 

550 

500 

450 

400 

350 

1 8 

Communication pattern 
PEi -+ PEi + 1 

: .. -
Version 5.0 
system software 

Version 4.3 
system software 

16 24 32 40 48 56 64 

Message Length (bits) 

Fig. 11. CM-2 communication timings. 

rate is computed using 

rate = ... ds executwn tlme zn ~ secon 

The MFLOPS rate can be misinterpreted if this guideline is not followed. Consider a 
program that uses more than the required 5Nlog2N floating-point operations. While 
this program might require more actual execution time than a radix-2 version, its 
MFLOPS rate could potentially be higher, giving a false impression of better perfor­
mance. By following the imposed guideline, both programs would be compared 
based on the given formula, thereby producing a higher MFLOPS rate for the radix-2 
program as expected. 

Measurement Techniques on the CM-2. Few tools have been developed to allow 
the user of the CM-2 to effectively and accurately collect performance information. 
A tool that can be used is gpror, a utility that produces an execution profile of C pro­
grams. The CM-2 Paris software includes a timing facility for reporting both real 
time and CM-2 active time. The timing instructions can be inserted around any 
block of code in a C/Paris program. Initially CM_start_timer clears out all the 
sequencer queues and makes sure all the previous Paris instructions have finished, 
then it reads the system time from the front end and resets the idle timer in the 
CM-2. The idle timer increments a counter whenever the microsequencer is waiting 



www.manaraa.com

69 

for an instruction from the front end. After initialization, the program executes nor­
mally until CM_stop_timer is encountered. At this point, the system time and idle 
timer are read. The elapsed front end time, CM-2 time, and CM-2 utilization can 
then be calculated. For accurate results the duration of time being measured must be 
much greater than the initialization latencies. Typically, program segments taking 
on the order of 10 seconds produce consistent results. Iterative loops can be used to 
measure the time of short code segments or even single instructions. 

Experimental Results. High-performance FFT algorithm design requires a 
knowledge of the time to perform various elementary instructions and data transmis­
sions. For this reason, the performance of fundamental FFT operations was meas­
ured. 

In Fig. 12, the MFLOPS rate is plotted versus the virtual processor (VP) ratio 
for execution of the Paris instructions CMJ_multiply_3_1L and CMJ_add_3_1L. 
Both instructions read two 32-bit values from memory, perform the corresponding 
operation, and write the result back to a third memory location. The linear increase 
in performance from a VP ratio of 1:1 up to 4:1 reflects the advantage of pipelining 
in the 32-bit -loating point accelerator (FPA-32). Further increases in the VP ratio 
saturate the FPA-32 and provide a minimal increase in performance. The maximum 
MFLOPS rate for a 32-bit floating-point multiply and a 32-bit floating-point add 
were measured at approximately 2144 MFLOPS and 1867 MFLOPS, respectively. 

In addition to fast arithmetic operations, high performance FFT programs also 
depend on rapid data movement. Fig. 13 displays the performance of the cubej inter­
connection function for OSi < 16 based on 64-bit data (the size transfers used in pro­
grams CM_lIlt and CM_2fTt) for VP ratios from 1 to 128. In the CM-2 16 proces­
sors are packaged in one chip, therefore, a 64K processor system has four dimen­
sions of the hypercube on-chip and 12 dimensions connecting the chips. The data 
transfers can be categorized as either on-chip or off-chip. The solid line indicates the 
performance trend of on-chip transfers and the dotted line indicates the trend for 
off-chip transfers. Following the solid line indicates that the performance for cubej, 
OSi s3, decreases from 13.5 millions of transfers per second to 5.2 millions of 
transfers per second at a VP ratio of 4:1, and then stabilizes at 5.7 millions of 
transfers per second for higher VP ratios. For a VP ratio of 1:1 the cubej functions 
for OSis3 are all on-chip; those for 4SiS15 are all off-chip. Increasing the VP 
ratio to 2: 1 effectively adds cube 4 to the on-chip functions, and adds a virtual dimen­
sion cube 16 to the hypercube. For a VP ratio of 128: I cubej functions, 0 sis 10, are 
on-chip and execute at on-chip rates. 

Fig. 14 displays the MFLOPS rates of the FFT programs for a single execution 
of various size problems. The Cray-2 I-dimensional FFT results are based on the 
Cray library routine CFFf2. The timings are the average of 10 runs of a 64-bit FFT 
of various lengths. These results represent timings in a normal busy environment If 
these codes were run stand-alone (with the other processors idle), the performance 
figures are expected to be about 30% faster. If they were run multitasked, a speedup 
of about four times could be expected. The Cray-2 at NASA Ames Research Center 



www.manaraa.com

70 

2200 

2000 

1800 
32-bit 

Operands 1600 
MFLOPS 

1400 

1200 

1000 

1·1 
800~ 

2:1 

---
...-.----------­---

CM_f_multiply_3_1L 

- - - - - CM_f_add_3_1L 

4:1 8:1 16:1 32:1 64:1 128:1 

Virtual Processor Ratio 

Fig. 12. MFLOPS rates for C/Paris floating-point add and multiply instructions 
on 32-bit operands with floating-point hardware installed. 

14 

12 

10 

MillioDSOf 8 
Transfers 

per Second 6 

4 

2 

0 

__ on-chip transfers 
. d·· off-chip transfers 
x-y cube" through cube, 

perform at the 
indicated rate 

0-6 0-7 0-8 0-9 0-10 

i\······i\·····d 6-17 
4-15 5-16 .... 

~·····-ti·····d·····d····-ti 
7-18 8-19 9-20 10-21 11-22 

1:1 2:1 4:1 8:1 16:1 32:1 64:1 128:1 

Virtual Processor Ratio 

Fig. 13. CM-2 transfer rates for cubej functions on 64-bit data. 



www.manaraa.com

300 

275 

250 

225 
200 

SNlogzN 175 
MFLOPS 

150 
fora 

125 
single FFf 

100 

75 

50 

25 

0 

8 

CM 2fft 
CM-lfft 
CFFT2 

Cray-2 
usmg_ t CPU with 
DR~memory, 
64-blt data . . .. . . . . . . ..... 

... ...... 

.. ' '"' CM-2 with FPA, 
... \ 32-bit data 

... '----

10 12 14 16 18 20 22 

LogzN (Size of FFf) 

71 

24 

Fig. 14. 5Nlog2N MFLOPS rates for one N-point FFT on a 64K-processor CM-2 
and a Cray-2. CM-2 rates only assume that twiddle factors are pre-computed. 

SNlogzN 
MFLOPS 

for maximum 
simultaneous 

FFfs 

800-r--------------------------------~ 

700 -

600 -

500 -

400 - .. 
: 

... 
.. 

... .. ...... 
............ Cray-2 

4 CPUs multitasked 
with DRAM memory, 
64-bitdata 

300 _~-: _______ C_M_-2_w_i/th FPA, 32-bit data 

200 -
.... --

100 -

o I-

8 
I 

10 
I 

12 

CM-2 ~th FPA, 32-bit data 
........ ,......... -

I 
14 

CM-2, 64-bit data 

I 
16 

I 
18 

LogzN (Size ofFFf) 

I 
20 

I 
22 24 

Fig. 15. 5Nlog2N MFLOPS rates when computing the maximum number of 
simultaneous FFTs of size N on a 64K-processor CM-2, and four 

simultaneous size N FFTs on a 4-CPU, multitasked Cray-2. 
For CM-2 rates twiddle factors are pre-computed. 



www.manaraa.com

72 

has 256 MWords of 80 ns DRAM memory. On a Cray-2 with SRAM memory the 
figures would be about 30% higher. 

The March 1989 configuration of the CM-2 at Ames consists of 32K proces­
sors running at 6.7 Mhz, 32-bit floating-point hardware, three Symbolics front-ends, 
one V AX-8000 Series front-end, and Version 5.0 of the CM-2 system software. For 
the timing measurements taken, the twiddle factors, W~, are assumed precomputed 
and available in local memory. All of the CM-2 timings were made on 32K PEs or a 
fraction thereof. Because a fully configured CM-2 consists of 64K PEs, the FFf 
results in Fig. 14 have been scaled to reflect the expected performance of a full 
configuration. 

CM-2 memory space is the limiting factor on the maximum size of a single 
FFf. The program CM _ 2ft't uses lOB + 49 bits of memory per PE, where B =32 for 
single precision and B =64 for double precision. Since each PE has 65536 bits of 
local memory, a virtual processor ratio as high as 65536/369 = 177 could theoreti­
cally be used for single precision data. Because the VP ratio must be a power of 
two, 128: 1 is the maximum in this case. This implies that the largest complex­
valued FFf is 8M points (M=1048576), assuming two points per PE, 32K physical 
PEs, and a VP ratio of 128:1. We can apply a similar analysis to the CM_lfft pro­
gram, which requires 6B + 49 bits of memory per PE. The maximum size FFf for 
this program is also 8M points. 

The peak performance occurs at a VP ratio of 2:1 in the case of both CM-2 
programs. This is the point at which the benefit of the pipelining outweighs the 
detriment of time-slicing. However, further increases in the VP ratio result in a 
decline in performance. This graph also demonstrates the advantage of the FPA-32. 
The single precision calculations are done by the FPA-32 while the double precision 
calculations are done bit-serially. 

The data in Fig. 15 represents the MFLOPS rates for executing the maximum 
number of simultaneous FFfs. For a 64K PE CM-2 this implies that all the PEs are 
active. The MFLOPS rates for the Cray-2 assume all four CPUs actively compute 
the specified length FFf. The peak performance for the CM-2 occurs when the FFf 
size is small. As the size of the FFT decreases the percentage of twiddle factors that 
equal ~ = 1 increases resulting in fewer required multiplies. 

DISCUSSION AND CONCLUSIONS 

The two studies presented were conducted on very different parallel machines, 
yet there is much in common in the conclusions that the studies yield. First, and 
most obvious, is that highly structured algorithms such as the FFT are well suited to 
parallel implementation. More pervasive, however, is the theme that the highest per­
formance parallel FFTs are obtained at the price of a minute attention to detail in 
almost all aspects of the implementation. This was demonstrated in a number of 
instances: 



www.manaraa.com

73 

• It was seen that. if the resources (i.e., number of processors) are available, the per­
formance gains realized by higher radix serial programs do not carry over to paral­
lel FFr implementations. 

• The analytical results predicting that an N 12-PE algorithm would have equal or 
better performance than an N-PE algorithm in computing an N-point FFr were not 
borne out on the CM-2, due to the strict requirements for the SIMD PEs to address 
common locations. 

• In both the SIMD PASM experiments and the CM-2 experiments, detailed coding 
of data movement was necessary to minimize non-uniform operations that would 
require enabling and disabling subsets of the PEs. In both cases, this coding 
yielded performance gains. 

• In the PASM experiments, performance gains were obtained in going from MIMD 
to SIMD to barrier-MIMD implementations. As mentioned, however, some 
experiments, such as the MIMD program combined with SIMD transfers, yielded 
slower performance. The detailed experiments were needed to identify the fastest 
combination of processing modes. 

• In the CM-2, the complex pattern of memory usage meant that careful memory 
utilization could both improve the data movement (and therefore execution time) 
and also increase the size of the FFr that could be computed. 

• In the PASM study, performance gains were achieved by optimizing the use of 
registers in order to minimize memory references. This required attention to the 
specific placement of intermediate results. 

• Artifacts of the network affected the packaging of data to be transferred in the 
CM-2, since the time required to send a single 64-bit message is less than the time 
to send two 32-bit messages. 

• Artifacts of the hardware affected the actual (as opposed to normalized) relative 
execution times of the SIMD and MIMD programs on PASM, because of the dif­
ferent number of wait states required for execution of the SIMD and MIMD 
instructions. 

• In both experiments, the choice of how to supply the twiddle factors for the FFT 
computation was dictated by the specific attributes of the machine. Alternative 
methods include precomputation/table look-up (used in the PASM experiments), 
use of the interconnection network to permute the twiddle factors to the PEs as 
needed (used in the CM-2 experiments), and direct calculation of the factors in 
each PE. The choice requires knowledge of the memory available, memory 
access speed, processor speed, and interconnection network speed. 

Some of the effects observed, such as the variable number of wait states in 
PASM and the message length effects in the CM-2, have implications for hardware 
design. Others, such as the choice of radix-2 versus higher radix implementations 
based on the number of processors available and the choice of which method to use 
to obtain twiddle factors, require the user to make intelligent decisions based on a 



www.manaraa.com

74 

fairly detailed knowledge of the hardware. Both experiments performed at least 
some of the coding at a low level in order to make optimal use of some resource of 
the system. This low-level coding provides significant insights into may aspects of 
the architectures/systems, but places a heavy burden on the user who wishes to run 
"not just any parallel FFT" but "a high performance parallel FFT." The insights 
should be of value not only for the potential machine users, but also for the designers 
and builders of future parallel systems. 

Acknowledgments. We thank David H. Bailey and Liviu Lustman of NASA Ames 
Research Center for providing FFT performance data for the Cray-2. We also thank 
Sam Fineberg, Wayne Nation, Pierre Pero, Tom Schwederski, and H. J. Siegel for 
may helpful discussions. 

REFERENCES 

[1] G. B. Adams and H. J. Siegel, "The Extra Stage Cube: A Fault-tolerant Inter­
connection Network for Supersystems," IEEE Trans. Comp., Vol. C-3I, May 
1982, pp. 443-454. 

[2] D. H. Bailey, "A High-Performance Fast Fourier Transform Algorithm for the 
Cray-2" J. Supercomputing, Vol. I, 1987, pp. 43-60. 

[3] D. H. Bailey, "A High-Performance Fast Fourier Transform Algorithm for 
Vector Supercomputers" Int'l J. Supercomputer Applications, May 1988. 
1968, pp. 275-279. 

[4] G. D. Bergland, "Fast Fourier Transform Hardware Implementations -- An 
Overview," IEEE Trans. Audio Electroacoust., Vol. AU-I7, June 1969, pp. 
104-108. 

[5] O. E. Brigham, The Fast Fourier Transform, Prentice-Hall, Inc., Englewood 
Cliffs, New Jersey, 1974. 

[6] E. C. Bronson, T. L. Casavant, and L. H. Jamieson, "Experimental 
Application-driven Architecture Analysis of an SIMD/MIMD Parallel Process­
ing System," IEEE Trans. Par.allel and Distributed Systems, Vol. I, Apr. 1990, 
pp.269-288. 

[7] "The Connection Machine System Model CM-2 Technical Summary," Techni­
cal Report HA87-4, Thinking Machines Corp., Cambridge, Massachusetts, 
Apr., 1987. 

[8] "Introduction to Programming in C/Paris," Version 5, Thinking Machines 
Corp., Cambridge, Massachusetts, June, 1989. 

[9] P. J. Denning and G. B. Adams III, "Research Questions for Performance 
Analysis of Supercomputers," Research Institute for Advanced Computer 



www.manaraa.com

75 

Science, RIACS Technical Report TR86.27, Dec., 1986. 

[10] L. H. Jamieson, P. T. Mueller, Jr., and H. J. Siegel, "FF[ Algorithms for SIMD 
Parallel Processing Systems," 1. Parallel and Distributed Computing, Vol. 3, 
Mar. 1986, pp. 47-71. 

[11] C. R. Jesshope, "The Implementation of Fast Radix 2 Transforms on Array 
Processors," IEEE Trans. Computers, Vol. C-29, Jan. 1980, pp. 20-27. 

[12] R. A. Kamin III and G. B. Adams III, "Fast Fourier Transform Algorithm 
Design and Tradeoffs on the CM-2," Int'l 1. High Speed Computing, Aug. 
1989, pp. 207-231. 

[13] S. F. Lundstrom and G. H. Barnes, "A Controllable MIMD Architecture," 
1980 Int'I Con! Parallel Processing, Aug. 1980, pp. 165-173. 

[14] Motorola, MC68000 16132-Bit Microprocessor Programmer's Reference 
Manual, fourth edition, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1984. 

[15] Motorola, MC68881 Floating-Point Coprocessor User's Manual, first edition, 
MC68881UM/AD, Motorola MOS Integrated Circuits Division, Austin, Texas, 
1985. 

[16] D. W. Myers and G. B. Adams III, "Benchmarking and Performance Analysis 
of the CM-2," Research Institute for Advanced Computer Science, RIACS 
Technical Report TR88.19, Dec., 1988. 

[17] M. O'Keefe and H. Dietz, "Hardware Barrier Synchronization: Dynamic Bar­
rier MIMD (DBM)," 1990 In/' I Con! Parallel Processing, pp. 1.43-1.46. 

[18] M. C. Pease, "The Indirect Binary n-Cube Microprocessor Array," IEEE 
Trans. Comp., Vol. C-26, May 1977, pp. 458-473. 

[19] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Process­
ing, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975. 

[20] H. J. Siegel, Interconnection Networks for Large-Scale Parallel Processing: 
Theory and Case Studies, Lexington Books, D. C. Heath, Lexington, MA, 1985. 

[21] H. J. Siegel et al., "PASM: a partionable SIMD/MIMD system for image pro­
cessing and pattern recognition," IEEE Trans. Comp., Vol. C-30, Dec. 1981, 
pp.934-947. 

[22] H. J. Siegel, T. Schwederski, J. T. Kuehn, and N. J. Davis IV, "An Overview of 
the PASM Parallel Processing System," in Computer Architecture, D. D. 
Gajski, V. M. Milutinovic, H. J. Siegel, and B. P. Furht, eds., IEEE Computer 
Society Press, Washington, D.C., 1987, pp. 387-407. 

[23] H. S. Stone, "Parallel Processing with the Perfect Shuffle," IEEE Trans. 
Comp., Vol. C-20, Feb. 1971, pp. 153-161. 



www.manaraa.com

4 
Fault-Tolerance for Parallel Adaptive Beamforming 

K.J.R. Liu 
Electrical Engineering Dept. 
Systems Research Center 
University of Maryland 
College Park, MD 20742 

1 Introduction 

S.F. Hsieh 
Dept. of Communication 
Engineering 
Nat'l Chiao Tung University 
Hsinchu, Taiwan 30039 

Beamforming is used in performing spatial filtering from an array of sensors 
so as to minimize the undesired interferences [23]. Under nonstationary con­
ditions, adaptive beamforming is definitely necessary if certain target perfor­
mance is demanded. However, the required massive computation makes it 
very difficult for real-time applications. Seeking fast algorithms for adaptive 
beamforming is therefore of great interest for signal processing researchers. In 
particular, the advent of maturing VLSI technologies has triggered many re­
searches on parallel algorithms and architectures. Among them, application 
specific array processors [17] are most attractive for high speed adaptive beam­
forming. 

We will focus on two types of adaptive beamforming methods using least 
squares criteria, namely, sidelobe canceller (SLC) and minimum variance dis­
tortionless response (MVDR) beamformers. The recursive least squares (RLS) 
method is well known in its fast convergence rate, which is invariant to the 
eigenvalue spread of the covariance matrix of the sampled data, as compared 
to least mean squares (LMS) method [11,27]. In the following we will consider 
the SLC and MVDR beamformers using the RLS approaches. 

Recent VLSIjWSI technology permits the building of million of transistors 
in a single chip, while a large system may require hundreds of these chips to 
function properly. For a complex system, a single fault from any part of the 
system can make the whole system useless. For various critical applications, 
highly-reliable computations are demanded. Fault-tolerance is therefore needed 
in many of these problems. 

Fault-tolerance has been defined as the ability of a system to execute spec­
ified algorithms correctly regardless of hardware failures and program errors 
[42]. In order to achieve the goal of fault-tolerance, redundancy has to be 
introduced. When we encounter a specific VLSI signal proessing problem, 
an inherent nature of that signal processing algorithm can be used to de­
velop a highly efficient specific fault-tolerant technique named algorithm-based 
fault-tolerance. The term algorithm-based means it is an algorithm-oriented 
but not a general scheme that can be applied to all general problems. A re­
cently reported algorithm-based fault-tolerant technique, called checksum en­
coding (and weighted checksum) scheme proposed by Hwang, Abraham, Jou, 
Chen et al., has evolved from the study of VLSI matrix computation systems 
[31,32,33,34]. This scheme belongs to the category of information redundancy. 



www.manaraa.com

78 

Since few hardware and time redundancies are necessary, it is promising for its 
low-cost and low overhead for VLSIjWSI multiprocessor systems. Many ap­
plications of the checksum (weighted checksum) scheme have been successfully 
applied to various signal processing and linear algebra operations [38]. The 
major drawback of the checksum scheme is that the system throughput will 
be slowed down because the system clock has to be extended long enough to 
accomodate the longer signal path of non-local interconnection caused by the 
checksum scheme. Unfortunately, local connection is one of the basic desirable 
requirements of implementations. 

First, parallel algorithms and architectures fot the adaptive beamforming 
is briefly reviewed in the next Section. In Section 3, real-time fault-toerance 
for the parallel implementation of adaptive beamformers is considered. The 
performance analusis is given in Section 4 and the finite-precision effects are 
presented in Section 5. Finally, the order-degraded effects are considered in 
Section 6. 

2 Parallel Algorithms and Architectures 

2.1 RLS formulation of sidelobe canceller 

A side/obe canceller (SLC) comprises of a high-gain main antenna and an array 
of auxiliary antennas to suppress the interferences embedded in the sidelobe re­
gion of the main antenna. Like many adaptive signal processing approaches, we 
will adopt time recursive updating as formulations. Consider the adaptive an­
tenna array as shown in Fig. 1 [6,11]. At each time snapshot, a kxp-dimensional 
data A is collected by the auxiliary antennas while the main antenna receives 
the data y. Our goal is to find a set of weighting coefficients Wj, j = 1, ... ,p, 
of the beamformer and possibly its associated residual, such that the Euclidean 
norm of the overall residual up to time n, .jL~~lI1A,. w - y,II2 is minimized. 

If k = 1, Gentleman and Kung [8] in 1981 proposed a systolic array to 
update the optimum weight wen) as time n advances by successively updating 
the upper-triangular matrix of the QR decomposition of the augmented matrix 
of A(n) and yen). McWhirter [21] in 1983 extended this structure by com­
puting the most recent scalar residual at each time snapshot without explicitly 
computing the optimum weight vector wen) which entails back substitution. 

Next, recurrence formula to update the optimum weighting and residual 
vectors in a block manner as a function of time are derived. Consider a time­
recursive least-squares (LS) problem: 

A(n)w(n) ~ yen) , (1) 

where A( n) and y( n) have growing dimensions in the number of data blocks in 
rows (growing-window), 

A(n) ~ [ (2) 



www.manaraa.com

Auxiliary 
antennas 

Figure 1: Adaptive antenna array 

Yk 

Y2 
Yl 

79 

Main 
antenna 



www.manaraa.com

80 

with Ai E ~kxp, i = 1,2, ... ,n and Yi E ~k, i = 1,2,···,n. Here we denote k 
and n as the block size and the time index respectively, and p is the order of 
the LS problem. Capitalized letters (e.g., A) are used to denote matrices; small 
letters in boldface (e.g., y) vectors, and small letters (e.g., Wi) scalars. A time 
index n is represented in the parenthesis, e.g., A(n), to denote all of the time 
span until n, or in the subscript, e.g., Ai, the time epoch n only. For simplicity 
of notations, we also choose our data as real-valued. It is very easy to extend 
to the complex-valued cases. The previously considered scalared cases in [8,21] 
then have k = 1. 

The LS solution wen) E lRP is computed such that the Euclidean norm of 
the residual vector 

[ 
el(n) 1 e2(n) 

e(n) = : = A(n)w(n) - yen) E ~nk 

en(n) 

(3) 

is minimized. All the norms II ·11 of vectors or matrices mentioned are 2-norm, 
unless otherwise specified. Our interest is to find the recurrence formula for 
wen) and e(n) as n increases. 

Suppose the QR decomposition of the augmented matrix [A(n) y(n)] is 
known at time n, 

[A(n) y(n)] = [Q(n) Ql.(n) 1 [ R~n) u(n) ] 
v(n) , (4) 

where Q(n) E ~nkxp and Ql.(n) E ~nkx(nk-p) represent the orthogonal range 
and null spaces of the data matrix A(n), and u(n) E ~p is the projection of 
yen) onto Q(n), yen) E ~nk-p is its counterpart projected onto Ql.(n), and 
R(n) E ~pxp is an upper-triangular matrix and assumed to be full-rank. R(n) 
is sometimes called the Cholesky factor of the covariance matrix of A( n) in 
that the Cholesky factorization of AT (n )A( n) can be uniquely expressed as 
RT(n)R(n) subject to the signs in each rows of R(n) as long as A(n) has full 
column rank. 

Because an orthogonal transformation preserves the Euclidean norms of of 
a vector, it can be shown that[18] 

Ile(n)JI = IIA(n)w(n) - y(n)JI (5) 

II[ Q(n) Ql.(n) 1 [R~n) ~~~j] [w~7)] II (6) 

= II[ Q(n) Ql.(n) 1 [ R(n)~~{n) u(n) ] II (7) 

= JlQ(n)[R(n)w(n) - u(n)lJl + JI- Ql.(n)v(n)JI (8) 

= 11- Ql.(n)v(n)11 (9) 

as long as 
R(n)w(n) = u(n) . (10) 



www.manaraa.com

81 

(8) follows from the fact that the Euclidean norm of the sum of two or more 
orthogonal vectors is equal to the sum of Euclidean norms of these vectors. (9) 
means that the residual vector while estimating yen) from A(n) must lie in the 
null space of A(n) which corresponds well with the geometrical interpretation 
of the orthogonal principle of LS problems. 

As the time index n advances by one, i.e., a new data block of size k, 
[An+1 Yn+1], is acquired, we can write the recurrence formula for QRD as 
follows: 

[A(n + 1) yen + 1) ] = [ ~(n) 
n+1 

yen) ] 
Yn+! 

(11) 

[ Q~n) Q.L(n) 0 1 [ R~n) u(n) ] = 0 h 
v(n) (12) 

An+1 Yn+1 

[ Q~n) Q.l.(n) 0 1 [ ~n+' Q*+1 ] Ink-p (13) 
0 II; ~.l. 

Qn+! Qn+! 

[ R(n + I) U(n+I)] 
x 0 v(n) 

0 Vn+1 

[ Q(~)Qn+1 Q.l.(n) Q(n)Q*+1 ] Qn+1 0 
~.l. 

Qn+1 

[ R(n + I) u(n + 1) ] x 0 yen) 
0 Vn+1 

= [Q(n+1) Q.l.(n+1)] [ R(nO+1) u(n + 1) ] 
v(n+1) . 

By defining 

Q(n+1)= [qn+1 
Qn+! 

q1+! ] E ~(P+k)x(p+k), 
Qn+! 

(14) 

we note that Q( n + 1) constitutes an orthogonal transformation to annihilate 
the newly appended data block A n+1, and Qn+1 E ~pxp and Qn+1 E ~kxp 
represent the operation of modifying the range space while Q*+1 E ~pxk, 

~.l. 
and Qn+1 E ~I;xl; that of the null space. We use a hat ~ to denote the 
new dimensional growth due to the appended data. To sum up, we have the 
following recurrence formula: 

Q(n + 1) [ Q(~)Qn+1 ] E ~(n+1)kxp , (15) 
Qn+! 

[ Q.l.(n) Q(~~Q*+! ] E ~(n+!)k x (n+1)k- p , (16) 
o Qn +! 



www.manaraa.com

82 

y(n + 1) = [Y(n)] E !R(n+l)k-p , 
Yn+l 

u(n + 1)] = Q(n + 1) [ R(n) 
Yn+l An+l 

u(n) ]. 
Yn+l 

(17) 

u(n) ] 
Yn+l 

The desired optimum weighting vector wen + 1) and the residual vector 
e(n + 1) are thus given by 

R(n + l)w(n + 1) = u(n + I). (18) 

which can be solved by back substitution. and 

To see the changes of residuals in each previous data blocks due to a new 
observation of An+! and Yn+!. we can write down the following lemma. 

Lemma 1 (updating residual) 

[ 

el(n+ 1) I e2(n + 1) 

e(n + 1) = : = 
en(n + 1) 

en+l(n + 1) 

proof (£9) can be derived from (15) and by noting that Q(I) = Ql, i.e., 

Q(2) = 

Q(3) 

(23) 



www.manaraa.com

Q(n) = [ 
21Q2·· ·Qn 1 
Q2Q3· ··Qn 

Qn 

(24) 

and substituting Q(n) back into (22). 

(23) explains that the overall residual vector at time n + 1 comprises of two 
parts: one of them is equal to -Q~+1Vn+1' the new dimensional growth due 
to An +I , while the other one is equal to the old residual vector at the previous 
time n, e(n), offset by Q(n)Q~+1 v n +1. Therefore, if we are only interested in 
R(n+l) and/or e n +1, then we can simply maintain the information of R(n) and 
u(n), which is usually the case for many applications such as beamforming[21, 
26]. However, if we need to monitor all of those previously block residual 
vectors ei, i = 1,···, n, then the previously computed range space Q(n) is 
still required to update those old residual vectors. This monitoring may aid in 
the determination of some spurious observations(rows) such that they can be 
deleted (downdated) from the L8 estimation problem and mitigate the possible 
bias caused by them [24]. 

83 

2.2 Simultaneously up/down-dating RLS problems 

Modifications of matrix factorizations have been of great interest in many appli­
cations [3,9,18]. In particular, recursively up/down-dating QR decomposition 
by adding some new and deleting some old data rows will be examined, which 
will then lead to the systolic implementations in the following chapters. 

A time-recursive up/down-dating RL8 problem amounts to find [R(n + 
1), u(n + 1)], v(n + 1) and/or e(n + 1) from the knowledge of [R(n), u(n)], 
yen), e(n), the new data block [An +I , Yn+1 ], and the old data block [An -l+ I , 

Yn-l+1 ], i.e., 

u(n) 1 yen) 

I Yn+1 I 
IYn-l+1 I 

Up! Downdating 
==> 

u(n + 1) 1 yen) 
Yn+I 

Yn-l+I 

(25) 



www.manaraa.com

84 

or symbolically 

X X X X x I8l I8l I8l I8l I8l 
x x x x I8l I8l I8l I8l 

x x X I8l I8l 0 

up/ Downdating 
=> I8l I8l x x 

+ + + + + 0 0 0 0 EI1 
0 0 0 0 e 

(26) 
Following (4), then we have 

[ A(n) ~;:~ ] ~ [ Q(n) 
Q.L(n) J[ R~n) y(n) 1 yen) 

An+l h, 
An+l 

An- Hl Yn-l+l Ik Yn+l 
An-l+l Yn-l+l 

(27) 

[ Q(n) Q.L(n) J[ Hu 
H12 

H" 1 I 
Ik 

H2l H22 H23 
(28) 

Ik 
H3l H32 H33 

[ R(no+ \) u(n+ \) 1 
yen) 

x 0 Yn+l ' 
0 Yn-l+l 

and the extended up/down-dated residual vector is given by 

g(n + 1) 

= 

[ 
A(n) Y(n)] [w(n+ 1) ] 
An +l Yn+l -1 

An-l+l Yn-l+l 

[ 
-Q.L(n)v(n) - Q(n)H12V n+l - Q(n)H13Yn_l+l 

-H22Vn+l - H23Yn-l+l 
-H32Yn+l - H 33Yn_Hl 

(29) 

]. (30) 

If we replace the augmented LS equations in (4) by premultiplying a di­
agonal weighting matrix A(n) = diag(>.n-llk, .. " >'h, Ik) to diminish the im­
portance of those previous observations (rows), where>. E (0,1] is a block 
forgetting factor, then the exponentially weighted residual in (22) will now 
become 

A(n + l)e(n + 1) = [ >.e(n) - ~(n)Q*+lVn+l ] , (31) 
-Qn+1Vn+ l 

where we can see that the previous residuals are gradually deemphasized by A. 
Equivalently, we may consider the weight vector wen) is chosen such that the 



www.manaraa.com

85 

>.-weighted Euclidean norm of residual vector, 

n 

Ile(n)lI). = 2: II>.n- i edI 2 (32) 

is minimized. 
A fixed-window or sliding-window RLS filtering needs to incorporate the 

new data segments (updating) and also remove the influence of the obsolete 
data (downdating). If we denote I as the number of blocks of the fixed-window 
size, then for n ~ I, the fixed-windowed data can be written from the growing­
window data given in (2) by discarding the oldest n -I blocks of data, i.e., 

[ 
An-l+l 1 

A(n) = ~n E ~kXp , [ 
Yn-l+l 1 

y(n) = Y:n E ~k . (33) 

In order to obtain R(n + 1) from R(n), we need to update (include) An+l 
and downdate (remove) A n -l+1 from R(n), i.e, 

R(n + I)T R(n + 1) = R(nf R(n) + A~+1An+l - A~_l+lAn-l+1' (34) 

where we have implicitly noticed that R(n + I)T R(n + 1) = A(n + If A(n + 
1), R(n)T R(n) = A(n)T A(n), and A(n+l)T A(n+l) = A(n)T A(n)+A~+lAn+l­
A~_l+1 An-l+1 . Therefore, an updating operation in the direct data domain is 
equivalent to an addition in the second order domain (covariance data), while 
a downdating operation is equivalent to a subtraction. There are two ways to 
accomplish this; one is to perform updating and downdating c;.t the same time, 
or we can do them one by one consecutively. These will be discussed in details 
in the following chapters. 

Under time-varying conditions, much attention has been focused on schemes 
employing exponential forgetting factors, while less on fixed-windowed ones. 
This is partially due to the difficulty of downdating obsolete data encountered in 
the windowed RLS model. But, fixed-window scheme should not be precluded 
simply because its computational burden. Other factors, especially fast param­
eters tracking ability, actually favors this method under some non-stationary 
conditions. To motivate the need for fixed-window under non-stationary con­
dition, a computer experiment is given to demonstrate the advantage of the 
faster convergence for the fixed-window method over the method based on an 
exponential forgetting factor. 

2.3 QRD-based systolic implementations 

The parallel algorithms performing recursive least squares filtering using QRD 
can be undertaken from the Givens rotation method, the modified Gram­
Schmidt orthogonalization procedure, or the Householder transformation ap­
proach. In particular, systolic algorithms and architectures have been proposed 
and studied in many contexts [8,12,13,14,15,19,20,21]. 



www.manaraa.com

86 

Givens rotation is the most fundamental orthogonal transformation. A sys­
tolic triarray based on Givens rotations has been proposed by Gentleman and 
Kung [8] to perform QRD. But McWhirter [21] is the first one in tacitly propa­
gating the rotational parameters along the diagonal direction to obtain the opti­
mum residual without the painstaking backsubstitution for optimum weighting 
coefficients. Ling, et al. [19] and Kalson and Yao [15] used modified Gram­
Schmidt methods to obtain similar results. A generic Givens rotation involves 
square-root operations which is undesirable in VLSI implementations. To avoid 
this difficulty, fast Givens rotation withou~ square-roots [7,21] and another ap­
proach using CORDIC (splitting a rotation into a sequence of predetermined, 
multiplication-free minirotations) [1] are also of great interest. Comparisons 
of these algorithms such as numerical stabilities, complexities and throughput 
rates are still ongoing researches. 

While the Givens rotation is a scalar-valued processing, modified Gram­
Schmidt and Householder transformation can process vector-valued data. A 
systolic array using modified Gram-Schmidt methods has been reported by 
Hsieh and Yao [13]. Liu, et al. also proposed a systolic block Householder 
transformation with two-level pipelining ability [20]. It has been proved by 
Wilkinson [28] that the latter achieves better numerical performance compared 
to the more popular Givens rotations. 

Although much attention has been paid on using exponentially forgetting 
factors, another fixed-windowed scheme using up/downdating techniques has 
also been studied. Rader and Steinhardt [24] first proposed hyperbolic House­
holder transformations. Alexander, et al. studied a hyperbolic rotation method 
[2]. Hsieh and Yao [14] proposed a dual-state systolic array to perform win­
dowed RLS filtering. A RLS systolic array for the sidelobe canceller is given in 
Fig.2. The processing cells based on Givens rotation are given in Fig.3. 

2.4 MVDR: least-squares with linear constraints 

The above derived algorithms only focus on recursive LS problems with no con­
straints. If a set of linear constraints are incorporated, after slight modifications[20], 
they are still applicable. MVDR beamforming [5,22,25,26,29] is one of the ex­
amples of such applications. Suppose the data received at the antenna array is 
given by 

(35) 

we want to minimize A-norm II . II>. of the residual 

k = 1,2, ... , K, (36) 

subject to a set of independent linear constraints 

k=I.2 •...• K. (37) 



www.manaraa.com

87 

Figure 2: The RLS systolic array for sidelobe canceller 



www.manaraa.com

88 

(1) Boundary Cell 

'Yi .. 

I--__ ~ (C,B) 

'Yout 

(2) Internal Cell 

(c, B) (c, B) 

Xout 

(3) Final Cell 

If Xin = 0 then 
c +- 1; s +- 0; 'Yout +- 'Yin; 
r = Ar, 

otherwise 
r' = - l"An2r-;;2,-+-x2,,-. .. 

V tn, 

C +- Ar/r'; s +- Xin/r ' 

r +- r'; 'Yout = C'Yin 
end 

Xout +- CXin - BAr 

r +- BXi .. + cAr 

Figure 3: Processing cells based on the Givens rotation 



www.manaraa.com

where the >.-norm is defined as 

n 

IlvllA = L: >.n-; Iv;l2, 
;=1 

The optimum weight (suppressing (k))is given by 

JlR-1a 
w=~' 

and the corresponding residual is 

Jl AR-1 e = IIal12 a, 

where 
a = R-Tc, 

and R is the Cholesky decomposition of the covariance matrix AT A. 

3 Real-time Fault-tolerance 

3.1 Fault Model 

89 

(38) 

(39) 

(40) 

( 41) 

As the VLSI technology progresses, the geometric features become smaller. 
Any defect affecting a given part of the circuity may cause an entire module 
or a logic block to become faulty and to produce arbitrary errors. Thus, the 
traditional gate-level single stuck-at fault model is no longer appropriate for 
VLSIjWSI system. A cell or module is allowed to produce arbitrary errors if 
any part of the cell is under failures [31]. However, we assume that at most 
one cell can be faulty at a given short period of time. This is based on the 
assumption that the system reliability is such that the mean time between 
failures is long enough and the probability of more than one fault occurring is 
very small. Some basic assumptions we need are as follows: 

1. If any part of the cell become faulty, the whole cell will not function 
correctly; 

2. The probability of the comnlUnication links and registers failing is very 
small and thus negligible [45]. 

The second assumption is reasonable since these components are typically much 
simpler and smaller than the processing cells themselves [45]. In addition, they 
can be implemented conservatively with high redundancy or with self-testing 
circuitry to mask a possible fault. 



www.manaraa.com

90 

3.2 Concurrent Error Detection 

An inherent nature of the QRD RLS systolic algorithm is that for a given data 
matrix A, the minimization of IIAwi(n) - y.(n)IIA for many desired response 

- "'-I 
vectors 1l.o, i E I, can be performed concurrently by appending some more 
response arrays (RAs) to the systolic array. The output of the ith RA, 
ei(n), is the minimal residual of l!T(n)!fu(n) - di(n), where di(n) is the nth 
desired response of ith input vector 1l.o' Let 1!.0 belong to the column space 
of A. That is, 1!.0 E 8pan{Q(i),1 5 i 5 p}, then y = 'LS=l CjQ(j). The 
optimal LS residual and the associated weight vectorfur 1!.0 are eo(n) = 0 and 
:!£i(n) = [CloC2, .. ·,cpjT, for n ~ p. The actual selection of {Cl,C2,""Cp } 

will be given later. Various extentions of this fundamental property of the 
optimum residual of a LS estimation problem form the basis of the proposed 
residual method approach toward concurrent error detection. Denote 1!.0 to be 
the artificial desired response (ADR) and the associated RA as the error 
detection array (EDA). 

Lemma 2 Given the ADR 1!.0 = Q(p), the contents of the EDA are identical 

to the contents of the pth column array of the QRD triangular array, and the 
optimal residual eo, the output of the pth cell of the EDA, is always zero. 

Proof: Both arrays are p X 1 vector. The first p - 1 elements of both arrays 
are identical given by the fact that the same data are rotated by same Ci and 
Si generated by boundary cells P Eii, 1 5 i 5 p - 1, where P Eii denoted the 
processor at position (i, i). Thus the outputs of the (p-l )th cells of both arrays 
are identical. Initially, the contents of the pth cells of both array are zeros. Let 
the first non-zero output of (p_l)th cells be x, by the update equations of both 
cells, the first non-zero contents of both pth cells equal x. If the second non-zero 
output of p-l )th cells is z, the updated content of the pth boundary cell equals 

,x2X2 + z and that of the pth cell of the EDA is spz + cp,x = ..,f).2X2 + z2, 
where sp = z/.J,x2x 2 + z2 and cp = ,xx/.J,x2x 2 + z2. Therefore, the contents 
of both array are identical. Since the rotation coefficients, cp and sp, generated 
by P Epp boundary cell are proportional to x and z respectively, the output of 
the pth cell of the EDA, eo, is cpz - spx which is always zero. 0 

If there is a fault in either the pth column of the array or the EDA, these 
contents are no longer identical and then lead to a non-zero eo. Thus a fault 
is detected. However, if there is any fault outside of these two arrays, then 
the errors produced by that fault will affect both of these arrays in the same 
manner (i.e., contents of both arrays are still identical) and resulting in a zero 
eo. Thus, these faults will not be detected by the 1!.0 = !!(p) design. Clearly, 
we can generalize the above results by the following Lemma. 

Lemma 3 Given the ADR 1l.o = !!(k) , for 1 ::; k 5 p, the contents of the 
kth column array of the QRD triarray and the first k cells of the EDA are 
identical. The output of the kth cell of the EDA are zero. The contents of cell 
I, k + 1 ::; 15 p, of the error detection array (Ire all zeros. 



www.manaraa.com

91 

Corollary 1 A fault occurring outside of the kth column of the QRD triarray 
and the EDA will not be detected if the ADR is designed as 1!.0 = £(k). 

Proof: From the previous discussion, a fault occurring in the ith, 1::; i ::; k-l, 
column of QR array will not be detected. From Lemma 3, the output of the 
kth cell and the contents of cell I, k + 1 ::; I ::; p, of the EDA are all zeros. 
Thus, any fault occurring to the ith, k + 1 ::; i ::; p, column of QR array will 
be masked by these zeros. The optimal residual eo is always zerounless there 
is any inconsistency between the kth column of the QR array and the EDA.o 

From all the above observations, by selecting ~ properly as given in the 
following theorem, we can detect the presence of a fault in any location of the 
system. 

Theorem 1 (Concurrent Error Detection Theorem) Consider the selec­
tion of the artificial desired response 1!.0 = 2:f=l g( i). If there is no fault in the 
system, then theoutput of the EDA with 1!.0 as an input yields eo = o. If there 
is a fault in the system, then eo =F o. 

Proof: From Lemma 3, each £( i) is "zeroed out" by the jth cell of the EDA. 
Any error produced by a faulty processor, say in the ph column of the QR 
array, will not be zeroed out by the ph cells of the EDA. The output of the ph 
cell is then non-zero and propagates down to the output. Therefore, whenever 
el =F 0, there is a fault in the system. 0 

The ADR 1!.0 = 2:f=l g(i) is obtained by implementing a top row encoding 
array (EA) consisting of p summing cells as shown in Fig.4. The response array 
(RA), with the desired response y as input and e as output, located at the right 
of the EDA is incorporated with the system to produce the desired residual. 
Once eo =F 0, which indicates the system had a fault, then e(n) is considered 
to be in error and will not be used. The error detection is thus achieved in 
real-time. 

Example 1: An adaptive filter using QRD LS systolic array with order 
p = 3 is simulated. In between t = 25 and t = 35, a fault occurred in cell 
P E23 in such a way that random noise within range [-1,1) is generated. Fig.5 
plots leol versus t and shows the adaptive effect of the algorithm. A threshold 
device can be used with eo to provide a decision on the size of the error that 
can be tolerated. Fig.6 shows the leol in Fig.5 with threshold set at 0.3. A 
generalization of the proposed scheme is stated below. 

Theorem 2 (Generalized Error Detection Theorem) Any fault occur­
ring in the system can be detected if the ADR is given by ~ = 2:f=l cig( i), 
where Ci =F 0, 1 ::; i ::; p. 0 

The simplest ADR that can detect fault is indeed a checksum encoded data 
(given by Theorem 1) which is a special case of the set of ADR given by Theorem 
2. However, unlike the checksum fault detection scheme in [31,34]' Theorem 1 
and 2 provide a real-time fault detection scheme using the inherent nature of 
QRD RLS systolic array. 



www.manaraa.com

92 

Figure 4: Fault-tolerant RLS systolic array 



www.manaraa.com

93 

A Plot of leol 

O.51-----l.I----+------+------+------~ 

Time 

Figure 5: A plot of leol versus t 
.S 

1 

O. 5 

0 
o 125 250 375 

Figure 6: A plot of leol versus t with threshold 0.3 



www.manaraa.com

94 

3.3 Fault Diagnosis 

When a fault is detected, the system leaves the concurrent error detection 
phase and enters the fault diagnosis phase. The main purpose of this phase 
is to find the faulty processor row. Either of two methods, the flushing fault 
location (FFL) method or the checksum encoding (CSE) method, can be used 
to diagnose and locate the faulty row. The FFL method is developed under the 
assumption that only the residual output eo can be accessed externally, while 
the CSE method assumes that all the cells of the EDA can be accessed. 

3.3.1 Flushing Fault Location Method 

During the concurrent error detection phase, a fault is detected based on un­
known values of the incoming data in !!.(k), 1 ::; k ::; p, and contents of all the 
cells. However, in the FFL method, we will control the desired incoming data 
as well as the contents of the tri-array and the EDA, in order to obtain an 
appropriate value in eo to locate the faulty processor row. In the FFL method, 
we do not use the operations of the RA cells or the EA cells. From (10), the 
weight vector W = (W1> W2," ., wp ) can be solved by using the back substitution 
method of 

A p. - E~='+l r'jWj . w. = , ,= p, p - 1,···,1 
ril 

(42) 

where p. and r'j are elements of vector P and matrix R. A linear array to 
performed the back substitution as in [16] can be prevented by using the weight 
flushing technique cite. 

In a fault-free triangular LS systolic array, by "freezing" the QRD upper 
triangular matrix R(n) and the associated column vector P(n) in (10), theop­
timum solution lQ(n) can be "flushed" out sequentially with a skewed identity 
matrix input. In these operations, the internal cells in a given row, act as pure 
bypass elements with no Givens rotations, when the input to the boundary cell 
of that row is zero and c = 1 and s = 0 are being propagated. 

However, due to errors generated by the faulty processor, various parts of 
R( n) and P stored in the array are no longercorrect. A new test triangular 
matrix T and a test vector E.t are loadto the tri-array and EDA respectively. 
The values of T and P, can be either pre-stored or distributed by an host 
computer when a fault is detected. Specifically, define T = ~l' 12, ... ,1,,] as a 
p x p all-l's upper triangular matrix, where ~ is a p x 1 vector, and E.t as a p x 1 
all-1's vector. Since P t =!p, the optimal solution vector lQo = [0,0, ... ,1], as 
given by (10). One of the reasons for the selection of these all l's in T and 
P, is to reduce memory requirement. Only one-bit register is required for each 
cell or distribution requirement. 

With T and E.t frozen, consider a skewed p x p identity matrix input to 
the first p columns and all zeros input to the EDA. In the absence of a fault, 
components of the optimum solution vector, lQo = [0,0, ... , 1], are outputted 
sequentially at eo [30]. Denote if = [0,· . ·,0,1,0,· ·.,0] as a 1 x p vector of 
all zeros except for an one at the ith position, representing the ith row of the 



www.manaraa.com

9S 

skewed identity matrix input to the array. Then the output eo(l) in response 
to tjJT is processed by all the cells from the first to the pth row of the array. In 

-1 

general, eo(i) is the response to iJ (i.e. eo(i) = iJ .Y!o), and is processed by all 
the cells from the ith to the pth row. As considered above, in theabsence of a 
fault, eo(i) = 0, 1 :$ i :$ p - 1, and eo(p) = 1. However, with a fault in the 
kth row, then eo (i) =I- 0, 1:$ i :$ k, but responses due to p..J for k + 1 :$ j :$ p, 

encountering only fault free processing cells from the ph to the pth row, will 
yield the correct value. This property can be used to locate the faulty row in 
the FFL method. 

Theorem 3 (Flushing Fault Location Theorem) When a fault is detected 
and the system enters the fault diagnosis phase, both the EA and RA arrays 
are made inoperativeand all 1 's are loaded into the contents of the processor 
cell. A skewed identity p x p matrix is flushed into the system with all zeros 
input to the EDA. The EDA output eo(i), 1 :$ i :$ p is obtained sequentially. 
Assume the first zero output at eo(k + 1) = 0, occurs for some k, 1:$ k :$ 
p - 2, then the faulty processor is in the kth row. If there is no such k for 
eo(k + 1) = 0,1 :$ k :$ p - 2, and eo(p) = 1, then the (p - l)th row is the faulty 
row;otherwise, with eo(p) =I- 1, the pth row is the faulty row. 0 

Example 2: A QRD RLS array with order p = 5 is considered. Suppose a 
fault has occurred in P E 34 . When a skewed 5 x 5 identity matrix is flushed into 
the system, due to the randomly generated noise from the faulty cell P E34 , the 
outputs from eo are given by [0.2127, -0.5714, 0.7453, 0.,1.]. In the absance of 
an error, the outputs should be [0.,0.,0.,0.,1.). Since the first three elements 
are erroneous, based on Theorem 3, the faulty cell is in the third row. 

It is obvious the flushing of P..l is unnecessary since computations involving 
the entire QR array are definitely incorrect in the fault diagnosis phase. 

3.3.2 Checksum Encoding Method 

The basic assumption of the CSE method is that all the cells of the EDA can 
be accessed. Further more, all the contents of the tri-array can be piped out in 
the diagnosis phase. In this paper, instead of using the CSE as a fault detector 
as in [31], it is used to diagnose fault location when a fault has been detected. 
The disadvantages of the checksum scheme for real-time application is thus 
prevented. It has been shown in [31] that the QRD of a row checksum matrix 
Ar results in a row checksum upper triangular matrix R,.. Let rij(n) be the 
content of processor P Eij of the tri-array at time nand Pi(n) be the content 
of the ith processor of the EDA at time n. 

Theorem 4 (Checksum Encoding Theorem) Given the artificial desired 
response Yo = L:f=1 (riQ( i), for (ri =/: 0, the checksum 

p-i 

E (riri(i+k)(n + k) = Pi(n + p - i + 1), (43) 
,1;=0 



www.manaraa.com

96 

holds for i = Ii 2, .. ',p, n = p,p + 1,p + 2, .. ·, if no fault has occurred. If 
there is an m such that the checksum does not hold for m ::; i ::; p, then there 
is a fault in the system and the faulty processor is in the first row that does not 
meet the checksum. 0 

The time indexs are introduced to describe the time difference for a given 
row input of data to the array. Each column of input, say g(k), is zeroed out 
by the kth cell of EDA. Thus the content of the kth cell of EDA is affected only 
by g(i), k::; i ::; p. Therefore, if there is a faulty processor, say in row m, then 
all the rows below do not satisfy the checksum because of the error produced 
by the faulty one which cannot be zeroed out by the mth cell of EDA. 

Example 3: Consider a [R : Eo] matrix of intermediate results for a QRD 
RLS array with order p = 4, 

0.7930 0.7462 0.4655 0.9774 

o. 
o. 
o. 

1.2973 1.0816 1.0379 

o. 
o. 

0.2729 0.3643 

o. 0.1675 

2.9821 

3.4168 

1.7132 

0.8375 

where the (i, i + k) element, ri,(i+k), of R, takes the value at time n + Ie due 
to time skewing of the input. That is, ri,(iH)(n + Ie). The ith element of P 
takes the value at time n + 5 - i. That is, Pi(n + 5 - i). As we can see, after 
the third row, the checksums are no longer met for each row. From Theorem 
4, the faulty cell is in the third row. 

Unlike the FFL method, the CSE method cannot stop the concurrent er­
ror detection phase immediately when a fault is detected. Because of the 
skewed manner of inputtingthe data, if we stop the operation immediately, 
the checksum property will not hold according to Theorem 4. Each processor 
P Eij, 1::; i ::; j ::; p, of the QR tri-array has to take j - i more data and 
the ith cell of the EDA has to take p + 1 - i more data so that the checksum 
is satisfied for each row of the systolic array. If each data requires one system 
clock, we observe that at most p more system clocks are needed to process 
those unfinished data after the moment a fault is detected. The last row takes 
one clock and the first row takes p clocks. Generally, the ith row takes p + 1 - i 
clocks to process the unfinished data. Thus, those rows which take fewer clocks 
can pipe their final results out to the right to check their checksum while others 
rows are still working on their unfinished data. 

3.3.3 Order-Degraded Reconfiguration 

An order-degraded performance is reasonable and often acceptable in many 
LS applications. A reconfiguration is needed to reroute data paths for order­
degraded operation. Many models and approaches can be found in the litera­
tures [47,50,56] for the reconfiguration ofVLSI array processors. Here we use a 



www.manaraa.com

97 

Figure 7: Order-degraded RLS systolic array 

similar model described in [50]. When the faulty row, say row k, is determined, 
the cells in the kth column and row become connection elements and enter a 
dormant state. In the dormant state, each cell tests itself to check its status 
repeatedly [35]. The reduced (p-l) x (p-l) tri-array then operates in an order­
degraded RLS computational manner. Fig.7 shows an example of bypassing 
the faulty row and the associated column to become an order-degraded RLS 
array. When the (transient) fault is removed, the dormant cells reactivate and 
generate an interrupt immediately. The reactivation scheme recovers all of the 
cells which become connection elements before and turns them into active cells. 
Then the full-order RLS operation is resumed. Details on various schemes and 
technologies of reconfiguration can be found in [57]. 

4 Performance Analysis 

4.1 Optimal Efficiency 

Since a column of linear EDA and a row of linear EA are required, the com­
plexity of this fault detection scheme is 2p. That is, 2p redundant processors 
is required. Compare to the complexity of the triangular QRn RLS array, 
(p2 + 3p)/2, it is a cost-effective real-time fault detection scheme. Here we do 
not count the final output multiplier cells in the EDA and RA. 



www.manaraa.com

98 

We define the hardware efficiency Oh to be the ratio of the hardware cost 
of implementing the algorithm to the cost of implementing the algorithm with 
an error-detection capability. We see Oh(p) = (p2 + 3p)/(p2 + 7p). Thus 1/2 ::; 
Oh(p) ::; 1 since a single error can be detected by duplicating the hardware. 
When Oh(p) = 1, we say the error-detection scheme is most hardware efficient. 
Define the time efficiency Ot to be the ratio of the time to implement the 
algorithm and the time to implement the algorithm incorporating the error­
detection scheme. Obviously, time efficiency is bounded by 0 ::; OJ ::; 1. When 
Ot = 1, we say the error-detection scheme is most time efficient. If an error­
detection scheme is both most hardware and time efficiency, then it is said to be 
optimal. For the proposed residual method, clearly liII1p-+oo Oh(p) = 1. That 
is, it is asymptotically most hardware efficient. However, the time efficiency 
Ot(p) = 1, 'tip, so that it is also most time efficient. Therefore, the residual 
method is an asymptotically optimal error-detection scheme for the recursive 
L8 systolic array. 

4.2 Robust Error Detection 

Assume a fault occurs in an internal cell P Eij, i i- j, at a faulty moment. 
The output of this faulty cell is thus erroneous and can be described byx~ut = 
Xout + 6, where Xout is the fault-free output and 6 is the error generated by the 
fault. The error propagation path can be described by 

P Eij -+ P ECi+l)j -+ ... -+ P Ejj, 

and then PEkl, k 2: j, 12: j are all contaminated [54]. From the operations 
executed by the internal cell, the error is modified to Ci+lC by P ECi+l)j and the 
cumulative modifications of the error before reaching the boundary cell, P Ejj, 
IS 

j-l 

11 = C II Ck, (44) 
k=i+l 

where Ci is the cosine parameter generated by the boundary cell P Eii. Let ci 
and si denote the erroneous Cj and 8j respectively.The ci and si are then given 
by 

, Ar 
Cj = -VJA""2;;=r=Ji2f=+==;(=X=in=+=TJ~):;;:2' 

, Xin + 11 
8j = -v7~~2Fr:;;:2=+=(7X=in==+=11=;);:;:2' (45) 

In this case, 8i is no longer prop~rtional to Xin, Q(j) will not be zeroed out by 
the ph cell of the EDA [54]. The size of the error generated by this cell is 

(46) 

where r' = VA2r2 + x~n is the new updated uncontaminated value of the con­
tent of P Ejj. When 11j propagates down to the output of the EDA, 11; is 



www.manaraa.com

99 

influenced by the contaminated cosines c' of each following row. The error 
output at eo due to an error b generated at P E;j is then given by 

p p 
6 (. .) eo 1, J -, II C~7]j = -, II c~7] 

m=j+l m=j 

j-l p 

= -, II CI:· II c~b. (47) 
1:=;+1 m=j 

where, = TIt; clTI1=j c~ [21]. It becomes 

; j-l P 

eW,j) = - II CI II c~ II c~b. (48) 
1=1 1:=;+1 m=j 

Next, assume a fault occurs in a boundary cell, P Ejj, 1::; j ::; p, atthe faulty 
moment. Both erroneous cj and sj produced by P Ejj can be written by 

(49) 

where be and b. represent errors in the numerators while r~ represents the 
erroneous content of the denominators of Cj a nd Sj. The error produced by 
the ph cell of the EDA is then given by 

(50) 

and the output error at eo due to a faulty boundary cell is given by 

e~(j,j) IIp , x;nbe - >..rb. 
, Cm· , 

m=j+l r( 

j P 

= II CI· II c~. 7]j. (51) 
1=1 m=j+l 

Lemma 4 For some Cj, if there exists an n E [ such that cj(n) f:. 0, then 
cjCm) > 0 for all m > n, mE [. 
Proof: The cosine parameter is given by cHI = >"r(k)/r/(k), where r(k + 
1) = r'Ck) = J>..2 r2(k) + xln(k). 3n --+ cj(n) f:. 0 is equivalent to say that 
3n --+ r(n) f:. 0 or r(n) > O. Since r(k + 1) = r'Ck) ;:: >..r(k), we have r(k) > 0 
for all k ~ n. Therefore, cj(k) > 0 for all k > n.O 

For linearly independent input column vectors, all cj(n) f:. 0, and from (48) 
and (51), we can see that eg f:. 0, under unlimited precision condition, if there 
is a fault occurs in the system, except when u;nbe = >'rb. in (50). However, this 
is unlikely to happen. An error produced by a faulty processor at the faulty 
moment will be detected at the EDA output eo and the probability of error 
detection given a fault occurs equal one. That is, 

Pre error detected at eo I a fault occurred) = 1. 0 (52) 



www.manaraa.com

100 

4.3 Latency 

Now, we consider some basic issues related to latencies in the array. 
Definition 4.1: The system latency, t., is the time between the moment of 
data input to the system and the moment of the output of this data from the 
system. 
Definition 4.2: The processing latency, tp , of processor P Eij is the time 
between the moment a data in a wavefront inputs to the system and the moment 
P Eij is processing data from that wavefront. 
Definition 4.3: The error propagation latency, t., isthe time between the 
faulty moment and the error observed moment. 
It is clear that the system latency of the QR recursive LS array depends on 
the number of processors and delay elements on the boundary and is given by 
t. = 2p + 1. The processing latency of processor P Eij, 1 $; i $; j $; p + 1, is 
given by tp = (i + j) - 1. Since there are a totally of pep + 3)/2 processors, the 
expected processing latency is 

The error propogation latency is given by 

t. = t. - tp = 2(p + 1) - (i + j), (54) 

and the expected value is 

E(t.) = (p + 1)(p + 2)/(p + 3). (55) 

Definition 4.4: The fault diagnosis time, t J , of a faulty processor P Eij be the 
minimum time required to locate the faulty row right after the error observed 
moment. 
Definition 4.5: The recovery latency, t r , be the time between the faulty 
moment and the moment the faulty row is determined. 
Since the system latency is 2p+ 1, for the FFL method the fault diagnosis time 
of processor P Eij for the array is tfFL = (2p + 1) + i. We can show that the 
fault diagnosis time for the CSE method is tjSE = p+2-i. The expected value 
for fault diagnosis time are E(tfFL) = (5/2)p + 1 and E(tfSE) = (1/2)p + 2 
respectively. By the definition of the recovery latency, we have tr = t. + t J. 
Therefore, the recovery latency are t:-FL = 4p- j+3 and t~SE = 3p-2i- j +4, 
while the expected recovery latency are 

E(t~FL) = (7p2 + 23p+ 10)/(2p+ 6), 

E(t~SE) = (3p2 + 13p + 16)/(2p + 6) 

(56) 

(57) 

respectively. Due to the facts that multiple ports can be accessed externally 
and we can use the parallel pipe-out feature of the CSE method, it is not 
surprised that the performance of the CSE method is better than that of the 



www.manaraa.com

Expected Recovery Latency of FFL & CSE 

3S2r-----------.------------.------------r---------~ 

176r-----------~----------~~----------r---------__4 

...............• ~: ... 
................ 

ur---------~~----------+.~ .. 70 •• ~~-----+-----------1 

.........•............... 

2S so 7S 100 

Order of Least-Squares (p) 

Figure 8: Performance comparisons of the CSE and FFL methods 

101 

FFL method as indicated in Fig.8. However, for both cases, the order of the 
expected recovery latency is O(p), which is linear with respect to p. In prac­
tice, a (transcient) fault may not be necessarily an immediately observable 
fault. Without this assumption, all the values obtained in this section become 
the lower bounds of those parameters. That is, performance obtained by the 
assumption of immediately observable fault is the best performance we can 
achieve. 

5 Finite-Precision Effects 

5.1 Missing Error Detection 

The error may not be detected after multiple multiplications of Ci in (48) and 
(51) under finite-precision implementation. It is obvious there is no such prob­
lem when 8 is large. Since r in (45) tends to be a large number asymptotically, 
it is reasonable to assume the error size 8 generated by a fault is much smaller 
than r when 8 is small. Under this circumstance, from (45), we have cj ~ Cj. 

It has been shown [55] that when >. is close to 1, the cosine parameter will 
eventually reach a quasi-steady state. In the quasi steady-state, the asymptotic 
behavior of erroneous cosine is cj ~ Cj = >.. From (48) and (51), the error 



www.manaraa.com

102 

output eg due to an error size 6 is then approximated by 

6(' .) "" ,\2p-i c eo %,) - - u (58) 

for a faulty internal cell and 

(59) 

for a faulty boundary cell. Denote BI:!. be the wordlength of each memory and 
register of fixed point arithmetics. That is, each wordlength is of BI:!. bits and 
let f:::" = min(6, 'l]i)' To ensure the detection of error size f:::", we need 

,\2p-if:::" > ,\2pf:::" > 2-B", - - , (60) 

Therefore, the wordlength should be at least 

(61) 

such that the small error size f:::" can be detected. The second term of the right­
hand size is obvious since the error size f:::" must be detected; the first term is to 
account for the effects that the error propagates through the array of LS order 
p with forgetting factor >.. 

5.2 False Alarm 

Due to the finite-precision implementation, the residual output of the EDA will 
not be an actual zero if there is no fault in the system. we call this effect a 
false alarm. Here, we are going to model and quantitatively describe the false 
alarm effect and introduce a threshold device to overcome this problem. 

For a QRD RLS systolic array of order p with finite-precision floating point 
arithmatics, denote the first row of input vector as (Xl, X2,"" xp, L:f=l Xi+fp), 
where Xi = Jl(xi), fp = f(L:f=l Xi), and If I < u is a constantl , and the second 
row of input vector as (xi, x~"'" x~, L:f=l x; + fp). The content of the first 
boundary cell is given by 

(62) 

and the rotation parameters are e = Jl(Xt!rll) and s = Jl(xi/rll). The 
contents of the internal cells can then be obtained as 

rii Jl(Jl(sxj) + Jl(cxi» 
= [sxj(1 + f) + eXi(1 + f)](1 + f) 
:=::J (1 + 2f)(sij + eXj), 1 < j :S p (63) 

ITo simplify the notation, we do not give-indexs to different f'S. 



www.manaraa.com

103 

and the content of the first cell of the EDA is 

p p 

f1(Jl(s('E x~ + fp» + f1(c('E x. + fp))) 
.=1 .=1 

p p 

~ (s'Ex~+c'Exi)+6fp. (64) 
.=1 .=1 

From (62), (63), and (64), the mismatch T1 resulted from the finite precision 
computation of the first row is 

and it can be bounded by 

lTd < 6pjExmazi + 12fXma.,1 + 4(p - l)l fXma.,1 
(lOp - 2)lfXma.,1 ::::; lOplfxma.,l. 

(65) 

(66) 

For the second row, with the same principle, the mismatch is bounded by 
10(p - l)lfxma., I. The total mismatch from the whole array is given by 

p-1 

ITI::::; 'ElO(p- i)lfXma.,1 = 5p(p+ l)lfxmax l· (67) 
.=0 

The possible mismatch is thus bounded by 

ITI ::::; 5p(p + l)lfxmax l· (68) 

This bound can be interpreted as: For each row of input, each processing 
cell contributes about IfXmaxl amount of roundoff error. Since there areabout 
p(p+ 1) processing cells, the total possible roundoff error is then p(p+ 1) jExmax I. 

In order to prevent the false alarm, a threshold device is needed at the 
output of eo and the threshold has to set at least ITI. Suppose {J = 2, t = 16, 
then u = 2- 16 . Given an scaled input data such that Ixmax I = 1, the threshold 
of a QRD RLS array of order p = 20 is 

th ~ ITlmax ~ 5 . 20 .21.2- 16 = 0.032. (69) 

Since the thresholdis obtained from a conservative derivations, it can always 
provide a false alarmfree output. However, the estimated threshold may be 
much higher than that of the actual maximum of the residuals. We can relax 
the estimated threshold from information obtained in previous data to ensure 
the threshold will not be too high. A high threshold usually means a small 
error size may not be able to be detected. 



www.manaraa.com

104 

6 Order-Degraded Effects 

Consider a order p L8 problem with a n X p complex-valued data matrix Ap(n) 
denoted by 

Ap(n) = [y(1),l!(2), .. ',l!(n)f = [g(1),g(2), ... ,g(p)] = [Ap_l(n) : g(p)), 
(70) 

a n X 1 desired response vector 

ll.(n) = [d(l), d(2), . .. , d(n)]T, 

a p x 1 weight vector 

lQp(n) = [wf(n), ~(n), . .. , t{(n)f = ~_llp(n) : t{(n)f, (71) 

and a n X 1 residual vector 

Let the index of performance be defined by the weighted 12 norm of 

where 
A(n) = diag[A(n-l), A(n-2), ... , A, 1] 

with a real-valued forgetting factor 0 < A :::; 1 and A = A2. Then the least­
squares solution, satisfies 

The optimal weight vector can be obtained by solving the normal equation 

<pp(n)il!.,,(n) = tPp(n), (75) 

where 

A:_lCn)Ag"Cn) 1 
-------

g: (n )Agp (n) 

(76) 

and 
(77) 



www.manaraa.com

lOS 

It can be easily shown that 

{Pm ... (n) = 111l(n)lI~ -1/J: (n)lQ,,(n). (7S) 

For a order p-l LS problem, then as before, we want to minimize the weighted 
12 norm of 

!p_l(n) = [ep_l(I),ep_l(2), ... ,ep_l(n)f = Ap_1(n)l£p_l(n) -l!(n) (79) 

with weihgt vector 

1£p_l(n) = [wf-1(n), ~-l(n), .. " ~:~(n)]T. 

Obviously, the optimal weight vector of order p and p - 1 can be obtained 
as ~p(n) = ,p;l(n)1/Jp(n) and ~p_l(n) = ,p;~l(n)1/Jp-l(n) respectively. The 
difference vector of the optimal residual vectors of different order is defined by 

.6.(n) = f,,(n) - f,,_l(n) = Ap_1(n)[!Q,,_1Ip(n) - lQ,,_l(n)] + ~(n)g(p), (SO) 

and the weighted 12 norm of .6.( n) is defined to be the order degraded perfor-
mance, r(n), given by -

r(n) = 1I.6.(n)lI~ 

= .6.~H (n),pp_1(n).6.~(n) + 1I~(n)W 'lIg(p)lI~ 
+2· Re[~(n).6.~H(n)A:_1Ag(p)], (SI) 

where .6.~H(n) = ~p_1Ip(n) - ~p_1(n). To relate ~p_1Ip(n) with ~p_1(n), we 
define a LS problem of order p - 1 with Ap _ 1 as the data matrix and g(p) as 
the desired response. That is, we would like to minimize the weighted 12 norm 
of the residual vector 

fa,p-1 (n) = Ap_1 (n)!Q",p_1 (n) - g(p) = [e",p_1(1), e",p_1 (2), .. " e",p-1(n)f· 
(S2) 

From (72) and (75), the optimal weight vector can be obtained by solving 

,pp-1(n)~,p_1(n) = f(n), (S3) 

where f(n) is defined in (76). Let the optimal index of performance of this LS 
problem be {",p_l(n) = Ilfa,p_1(n)II~, then ,p;1 can be represented by 

,p;l(n) = [,p~~~(:) Q~=-l 1 + 1 [ -~,p_l(n) ] [-.Yt,p-1(n) 1]. 
OT 0 {",p_1(n) 1 
"""1'-1 

(S4) 
Then lQ" (n) can be represented by' expressions of order p - 1 as 

lQ,,(n) = 

= [ 
,p-l (n)AH (n) + 1t.. p _l(n)!!':. l(n) 1 p-1 p-1 { •.• _l(n) 
- - - - - - - - - - - - - - - Ay( n), 

-!!':._l(n) -
{.,._l(n) 

(85) 



www.manaraa.com

106 

and therefore, 

" I(n) " 
= !!1p_I(n) + { ()~,p_I(n), 

a,p-l n 

W:(n) = 
I(n) 

{a,p-l(n) , 

(86) 

(87) 

where I(n) =< L.,p_l(n),l!(n) >A and < ~'1! >A=< A~, All. > is the weighted 
inner product. Thus, 

A "( ) I(n) " ( ) 
~.Y!. n = (; ()~'P-I n . .. a,p-l n 

(88) 

Now, we may proceed to calculate r(n) in (81). The first term of (81) becomes 

b.wH (n)l/lp_I(n)b.w(n) 

= III(n) 112 " ( )AH ()A-A ()" ( ) c2 ()~'P-I n p-l n p-l n .Y!.a,p-l n 
"a,p-l n 

= ilI(n)t) (L.,p_l(n) + ~(p»HA(L.,p_I(n) + ~(p» 
a,p-l n 
III(n)1I2 • 

= e () ({a,p-l(n) + 17(n) + 2· Re« fa,p_I(n),~(p) >A». (89) 
a,p-l n 

The second term of (81) becomes 

1IW:(n)1I2 ·1I~(p)lI~ = iE~:~~) ·17(n). (90) 

The third term of (81) is 

2· Re[W:(n)b.wH(n)A:_IA~(p)] 

[ III(n)1I2" H ()AH ( )A- (P)] = 2· Re - (;2 ()~'P-I n p-l n ~ 
"a,p-l n 

= -2 i1:~;~~) . Re[(L.,p_l(n) + ~(p»H A~(p)] 
= -2 III(n)1I2 17(n) _ 2 III(n)1I2 . Re« l (n) a(p) ») (91) 

c2 (n) (;2 (n) =,p-l,_ A· 
"a~-l "a~-l 

Combining (89), (90), and (91) together, we have 

r(n) = III(n)1I2 = II < L.,p-l (n), y(n~ >A 112 
{a,p_l(n) 1It.,p-I(n)IIA 

(92) 

Denote the last row of input data matrix,!!(n) = ~_l(n), Up (n)], the difference 
of the optimal residual at time n then can be obtained as 



www.manaraa.com

107 

III(n)112 II T ( ) A ( ) ()112 
C2 () !!P-l n .!Q",p-l n - Up n 
<"o,p-l n 

i~:~:~~) lIeo,p-l(n)W· (93) 

6.1 Geometric Interpretation 

From (92), we can see the order degraded performance is indeed the energy 
of the projection of the desired response y(n) onto the subsapce spanned by 
the optimal residual fa,p_l(n). As the vector ]t(n) becomes more orthogonal to 
fa,p-l (n), the order degraded performance is also reduced. Denote the column 
space of Ap_1(n) by {Ap_l(n)}. Then the projection operator PA._1 projects 
vectors onto space {Ap_1(n)} and the orthogonal projection operator Pt._1 = 
1- PA._ 1 projects vectors onto the space {A;-_l(n)} which is orthogonal to 
space {Ap_1 (n)}. The entire space S spanned by ]t(n) can be represented by 

(94) 

and all of these subspaces are orthogonal to each other. It is obvious that 
fa,p_l(n) = P.t-1g(P)' By projecting the desired response ]t(n) to these sub­
spaces, we obtain 

1t(n) PA._11t(n) + P1. .• _11t(n) + Pt.1t(n) 

fa p_l(n) A 

= Q(n)+ < t.,p_l(n),]t(n) >A Ilfa.~_l(n)ll~ + fp(n), (95) 

and all of these vectors are also orthogonal to each other. If we drop the 
vector g(p), then the one-dimensional subspace of {Pi',_1 g(P)} cannot be used 
to represent y(n). Therefore, the components of y(n) in this subspace is lost 
and this introduces an error vector P, y(n) with energy 

-o,p-l_ 

liP, y(n)112 = III(n)W = f(n). 
-0 •• _1_ ~o,p_l(n) 

(96) 

The energy of the last component of this error vector is given by (93). Fig.9 
illustrates the geometric interpretation discussed above. 

7 Summaries 

We first introduce the basic concepts of systolic implementation of RLS esti­
mation for adaptive beamformers such as sidelobe canceller and MVDR beam­
former. Then, a general algorithm-based fault-toerance is proposed for this 
class of systolic arrays. Detailed consideration on performance analysis, finite­
precision effects, and order-degraded effects are given. In conclusions, the pro­
posed fault-tolerant scheme is robust, and can be designed to be false alarm 
free without missing error detection problem. 



www.manaraa.com

108 

Figure 9: Geometric illustration 

References 

[1] H. M. Ahmed, J. M. Delosme, and M. Morf, "Highly concurrent computing 
structures for matrix arithmetic and signal processing", IEEE Computer, 
Vol. 15, No.1, pp. 65-82, Jan. 1982. 

[2] S. T. Alexander, C. T. Pan, and R. J. Plemmons, "Numerical properties 
of a hyperbolic rotation method for windowed RLS filtering," Proc. of the 
IEEE ICASSP, pp. 423-426, 1987. 

[3] Richard Bartels and Linda Kaufman, "Cholesky factor updating tech­
niques for rank 2 matrix modifications," SIAM J. Martrix Anal. Appl., 
10(4):557-592, Oct. 1989. 

[4] A. Bjorck, "Least Squares Methods" in Handbook of Numerical Anal­
ysis Vol. II: Finite difference methods - Solution of equations in Rn. 
Elsevier North Holland, 1989. 

[5] A. W. Bojanczyk and F. T. Luk, "A novel MVDR beamforming algo­
rithm," SPIE Vol. 26 Advanced Algorithms and Architecture for Signal 
Processing II, pp. 12-16, 1987. 

[6] R. T. Compton Jr., Adaptive antennas: Concepts and performance, 
Prentice Hall, 1988. 

[7] W. Morven Gentleman, "Least squares computations by Givens transfor­
mations without square roots," J. Inst. Maths Applies, 12:329-336,1973. 



www.manaraa.com

109 

[8] W. M. Gentleman and H. T. Kung, "Matrix triangularization by systolic 
array," Proc. SPIE, Vol. 298: Real-time signal processing IV, pp. 19-26, 
1981. 

[9] W. Murray P. E. Gill, G. H. Golub and M. A. Saunders, "Methods for mod­
ifying matrix factorizations," Mathematics of Computation, 28(126):505-
535, Apr. 1974. 

[10] G. H. Golub and C. F. Van Loan, Matrix computations, Johns Hopkins 
Press, 2nd ed., Baltimore, MD, 1989. 

[11] S. Haykin, Adaptive filter theory, Prentice-Hall, Englewood Cliffs, NJ, 
1986. 

[12] D. E. Heller and I. C. F. Ipsen, "Systolic networks for orthogonal decom­
positions," SIAM J. Sci. Stat. Comput., No.4, pp. 261-269, 1983. 

[13] S. F. Hsieh and K. Yao, "Hyperbolic Gram-Schmidt pseudo orthogonal­
ization with applications to sliding window RLS filtering," Proceedings of 
24th Annual Conference on Information Sciences and Systems, pp. 197-
202, Mar. 1990. 

[14] S. F. Hsieh and K. Yao, "Systolic implementation of windowed recursive 
LS estimation," Proc. of IEEE Int'l Symp. on CAS, pp. 1931-1934, May 
1990. 

[15] S. Kalson and K. Yao, "Systolic array processing for order and time re­
cursive generalized least-squares estimation," Proc. SPIE 564, Real-Time 
Signal Processing VIII, pp. 28-38, 1985. 

[16] H. T. Kung, "Why systolic architectures?" IEEE Computer, Jan. 1982. 

[17] S. Y. Kung, et al., Proceedings of the Int'l Conf. on Application Specific 
Array Processors, IEEE Press, Sept. 1990. 

[18] C. L. Lawson and R. J. Hanson, Solving least squares problems, 
Prentice-Hall, Englewood Cliffs, N.J., 1974. 

[19] F. Ling, D. Manolakis, and J. G. Proakis, "A recursive modified Gram­
Schmidt algorithm for least-squares estimation," IEEE Trans. on Acous., 
Speech, and Signal Processing, Vol. ASSP-34, No.4, pp. 829-836, Aug. 
1986, 

[20] K. J. R. Liu, S. F. Hsieh, and K. Yao, "Two-level pipelined implemen­
tation of systolic block Householder transformations with application to 
RLS algorithm," Proc. Int'l Conf. on Application-Specific Array Proces­
sors, pp.758-769, Princeton, Sep. 1990. 

[21] J. G. McWhirter, "Recursive least-squares minimisation using a systolic 
array," Proc. SPIE 431, Real time signal processing VI, pp. 105-112, 1983. 



www.manaraa.com

110 

[22] J. G. McWhirter and T. J. Shepherd, "Systolic array processor for MVDR 
beamforming," lEE Proceedings, Vol. 136, Pt. F, No.2, pp. 75-80, Apr. 
1989. 

[23] R. A. Monzingo and T. W. Miller, Introduction to adaptive arrays, 
John Wiley & Sons, Inc., 1980. 

[24] C. M. Rader and A. O. Steinhardt, "Hyperbolic Householder transforma­
tions," IEEE Trans. Acoust., Speech, Signal Processing, Vol. ASSP-34, No. 
6, pp. 1589-1602, Dec. 1986. 

[25] R. Schreiber, "Implementation of adaptive array algorithms," IEEE Trans. 
on Acoust., Speech, Signal Processing, Vol. ASSP-34, No.5, pp. 1038-1045, 
Oct. 1986. 

[26] B. D. Van Veen and K. M. Buckley, "Beamforming: a versatile approach 
to spatial filtering," IEEE ASSP Mag., Vol. 5, No.2, pp. 4-24, Apr. 1988. 

[27] B. Widrow and S. D. Stearns, Adaptive signal processing, Prentice­
Hall, Englewood Cliffs, NJ, 1985. 

[28] J. H. Wilkinson, The algebraic eigenvalue problem, Oxford University 
Press, England, 1965. 

[29] B. Yang and J. F. Bohme, "On a systolic implementation and the numer­
ical properties of a multiple constrained adaptive beamformer," Proc. of 
the IEEE ICASSP, pp. 2819-2822, 1989. 

[30] C.R. Ward, P.J. Hargrave and J.G. McWhirter, "A novel algorithm and 
architecture for adaptive digital beamforming", IEEE Trans. Antennas 
Propagat., Vol AP-34, pp.338-346, March, 1986. 

[31] C.-Y. Chen and J .A. Abraham, " Fault-tolerant systems for the computa­
tion of eigenvalues and singular values", Proc. SPIE, Vol 696, Advanced 
Algorithms and Architectures for Signal Processing, pp.228-237, 1986. 

[32] C.-Y. Chen and J .A. Abraham, "Current error detection in VLSI processor 
arrays" , Proc. SPIE, Vol 826, Advanced Algorithms and Architectures for 
Signal Processing II, pp. 205-214, 1987. 

[33] K.-H. Huang and J .A. Abraham, " Algorithm-based fault-tolerance for ma­
trix operations", IEEE Trans. Computer, Vol C-33, pp.518-528, June, 
1984. 

[34] J.-Y Jou and J.A. Abraham, " Fault-tolerant matrix arithmetic and signal 
processing on highly concurrent computing structures", Proc. IEEE, Vol 
74, pp.732-741, May, 1986. 

[35] S.Y. Kung, VLSI Array Processors, Prentice Hall, 1988. 

[36] F.T. Luk and H. Park, "Fault-tolerant matrix triangulization on systolic 
array", IEEE Trans. Computer, Vol 37, pp.1434-1438, Nov. 1988. 



www.manaraa.com

111 

[37) S.-W. Chan and C.-L. Wey, "The design of concurrent error diagnosable 
systolic arrays for band matrix multiplications", IEEE Trans. CAD, Vol 
7, pp.21-37, Jan. 1988. 

[38) J .A. Abraham et al., " Fault tolerance techniques for systolic array" ,IEEE 
Computer, Vol 20, pp.65-76, July 1987. 

[39) J.V. McCanny and J.G. McWhitter, "Some systolic array developments 
in the United Kingdom", IEEE Computer, Vol 20, pp.51-64, July 1987. 

[40) K.G. Shin and T.-H. Lin, "Modeling and measurement of error propoga­
tion in a multimodule computing system", IEEE Trans. Computer, Vol 
37, pp.1053-1066, Sep. 1988. 

[41) C.J. Anfinson and F .T. Luk, "A linear algebraic model of algorithm-based 
fault tolerance", Proc. IEEE Int'l Conf. Systolic Array, pp.483-493, May 
1988. 

(42) A. Avizienis, " Fault tolerant computing - An overview", IEEE Computer, 
Vol 4, pp.5, Jan. 1971. 

[43) J .A.B. Fortes and C.S. Raghavendra, "Gracefully degradable processor 
arrays", IEEE Trans. Computer, Vol C-34, pp.1033-1044, Nov. 1985. 

[44) S.Y. Kung et al., VLSI and Mordern Signal Processing, Prentice­
Hall, 1985. 

[45) H.T. Kung and M.S. Lam, " Wafer-scale integration and two-level pipelined 
implementaiton of systolic array", J. Parallel Distrib. Comput., Vol 1, 
pp.32-63, 1984. 

[46) H. Lev-Ari and B. Friedlander, "On the systematic design offault-tolerant 
processor arrays with application to digital filter", Proc. IEEE Workshop 
on VLSI Signal Processing, pp.483-494, Nov. 1988. 

[47) S.N. Jean, C.W. Chang and S.Y. Kung, "Graceful degradation schemes 
for static/dynamic wavefront array", Proc. Int'l Conf. Parallel Processing, 
pp.249-255, Aug. 1988. 

[48) J.-Y. Jou and J.A. Abraham, "Fault-tolerant algorithms and architec­
tures for real time signal processing", Proc. Int'l Conf. Parallel Processing, 
pp.359-362, Aug. 1988. 

[49) J.-Y. Jou and J.A. Abraham, " Fault-tolerant matrix operation on multiple 
processor system using weigted checksums" , Proc. SPIE Vol 495 Real Time 
Signal Processing VII, pp.94-101, 1984. 

[50) S.Y. Kung, C.W. Chang, and C.W. Jen, "Real-time reconfiguration for 
fault-tolerant VLSI array processors", Proc. Real-Time Systems Sympo­
sium, pp.46-54, 1986. 



www.manaraa.com

112 

[51] I. Koren and D.K. Pradham, "Yield and performance enhancement 
through redundancy in VLSI and WSI multiprocessor systems", IEEE 
Proc. Vol 74, pp.699-711, May, 1986. 

[52] I. Koren and M.A. Breuer, "On area and yield considerations for fault­
tolerant VLSI processor arrays", IEEE Trans. Computer, Vol C-33, pp.21-
27, Jan. 1984. 

[53] C.J. Anfinson et aI., "Algorithm-based fault-tolerant techniques for 
MVDR beamforming", Proc. IEEE ICASSP, pp.2417-2420, May, 1989. 

[54] K.J.R. Liu and K. Yao, " Gracefully degradable real-time algorithm-based 
fault-tolerant method for QR recursive least-squares systolic array" , Proc. 
International Conference on Systolic Array, pp. 401-410, Killarney, Ireland, 
May, 1989. 

[55] K.J .R. Liu, " Dynamic range for finite-precision QRD LS algorithm and its 
stability", Proc. IEEE Int'l Sym. Circuits and Systems (ISCAS), pp.3142-
3145, New Orleans, May 1990. 

[56] M. Sami and R. Stefanelli, "Reconfigurable architectures for VLSI pro­
cessing arrays", Proc. IEEE, pp.712-722, May 1986. 

[57] M. Chean and J .A.B. Fortes, "A texonomy of reconfiguration techniques 
for fault-tolerant processor arrays", IEEE Computer, Vol. 23, pp.55-69, 
Jan. 1990. 



www.manaraa.com

5 
Parallel Computation of Fan Beam Back-Projection 

Reconstruction Algorithm in Computed Tomography 

Wen-Tai Lin, Chung-Yih Ho, and Chi-Yuan Chin 

Corporate Research and Development 
General Electric Company 

P.O. Box 8, KWC 417 
Schenectady, NY 12301 

Abstract 

This paper describes parallel processing algorithms and architecture for 
computed tomography (cr) using a fan beam energy source and, more 
particularly, a processor array adapted for computing the back-projection 
reconstruction algorithm (BPR). By making use of some inherent parallelism 
of BPR, a modular ring architecture in multiple of eight processors is shown 
to be well suited for a class of cr algorithms. The parallel architecture has 
encompassed a reconfigurable binary tree to accommodate a wide range of 
processor interconnections needed for different image processing schemes, 
ranging from front-end filtering, calibration, and FFf to post-processings 
such as artifact removal and image display. 



www.manaraa.com

114 

Section 1 Introduction 
When the first commercial CT machine was constructed, the algorithm 

it used was called algebraic reconstruction technique (ART). Basically, ART 
solves a system of linear equations iteratively. Because of the intensive 
computation involved, this method was soon replaced by a direct Fourier 
technique (DFT) based on the Central Slice Theorem. It then evolved 
into the convolution and back-projection reconstruction (BPR), which is the 
most widely used method in commercial CT scanners nowadays. The fan 
beam energy source, which simplified the scanning geometry and largely 
reduced the scanning time, was soon adopted in the CT machine. Although 
the DFT method has an inherent speed advantage over back-projection 
reconstruction, it is considered to be unsuitable for use with the fan beam 
scanner because of excessive sensitivity to noise [1]. The BPR is more 
suitable for view pipelining and yields images that are relatively free of 
artifacts from processing. 

In general, the required processing speed is determined by the speed 
of rotation gantry and the frequency of diagnostic request. As the need for 
more sophisticated three-dimensional (3D) image reconstruction increases, 
the conventional approach, which uses a minicomputer as a host and attaches 
optional hardware to speed up the BPR processes, is experiencing difficulties 
in keeping up with the large amount of data generated from multiple scans; 
the approach requires O(N4) operations. The bottleneck appears to be in the 
reconstruction unit, where BPR is carried out in a sequential (or pipelined) 
manner. Although rebinning (followed by DFT) has been considered to be the 
most promising technique for parallelizing the image reconstruction of a fan 
beam CT scanner, its image quality is still a problem because of the need for 
interpolating data on a Cartesian coordinate from data over a polar coordinate. 
The rebinning process itself requires O( J( N3) operations for compensating 
truncation in the interpolation of rebinned projection data, where the size of 
J( also determines the quality of the reconstructed image [2]. 

In this paper we present a method for parallelizing the image reconstruc­
tion of a fan beam CT scanner. The result of this method is also applicable 
to 3D cone beam CT machines if the BPR method is also used for image 
reconstruction on each plane. A reconfigurable architecture is proposed to 
nail down the issues of cost-effectiveness, scalability, modularity, fault tol­
erance, and performance. In Section 2 we briefly introduce the BPR method 
and review the computation steps involved in some commercial CT recon­
struction units. In Section 3 an inherent parallelism associated with BPR is 



www.manaraa.com

115 

explored. By making use of such parallelism. a modular ring architecture in 
multiple of eight processors is proposed. Then in Section 4. we present a 
generic architecture using binary trees to integrate multiple rings and to pro­
vide reconfigurability and fault tolerance for the system. Section 5 presents 
the conclusions of this effort. 

Section 2 Fan Beam CT Computation 

Figure 1 is a graph of the geometry of fan beam scanning and back­
projection. Assume that a complete scan is comprised of N views evenly 
taken from a full rotation of the gantry and out of each view there are M 
samples collected from the detector array. Then after certain pre-convolution 
and calibration the input to the BPR process can be organized as a N x M 
data array D. Let f( r, 0) be the density of an image pixel located at a 
polar coordinate (r,O). The reconstruction of f(r, 0) can be summarized as 
follows: 

N 

f(r,O) = L WnDn,k (1) 
n=l 

w: - f3n+ 1 - f3n-l (2) 
n - 2U2 

U 2 = [r cos (f3n - 0)]2 + [E + r sin (f3n - 0)]2 (3) 

k = a- 1 tan- 1 {rcos(f3n - O)/[E + rsin(f3n - O)]} (4) 

The equations are drawn from [3. 4]. For each pixel. Equation (1) accumu­
lates N -weighted detector values collected from N projection angles. Equa­
tion (2) and (3) calculate Wn • the nth weight and U2• the square distance of 
pixel (r, 0) and the x-ray energy source radiating at angle f3n. Equation (4) 
estimates a relative position (in the detector space) which lines up the x-ray 
source and the pixel of interest. If k is not an integer. then a more accurate 
value of Dn,k may be obtained by interpolation using adjacent detector values. 

The cr reconstruction can be divided into three major computation steps 
(see Figure 2): pre-convolution, convolution and back-projection, and post­
processing. The computation time in each major step is estimated based on 
a set of algorithms including several pre-filtering and calibration schemes 
(Tl). FFr (T2), BPR (1:'3), and an image restoration algorithm to remove 
artifacts introduced by inaccurate interpolation (T4). For a moderate image 
resolution (512 x 512),1:'3 accounts for 80% of total computation time based 



www.manaraa.com

116 

Detector Strlp 

Figure 1 The geometry of fan beam scanning and back-projection. 



www.manaraa.com

Pre-convolution: 

Tl=O.133 sec. 

TI + T2 + T3 + T4 = 2 seconds 

T2=O 2 sec 

T3=1.67 sec. 

Post-proecssing 

T4=O.03 sec. 

117 

Figure 2 The computation steps of a cr fan beam reconstruction unit. 



www.manaraa.com

118 

on a sequential machine. This figure is obtained by assuming that Equations 
(2) to (4) are computed elsewhere. 

Figure 3 further illustrates the dataflow of each computation step. A 
downward (left-to-right) arrowhead signals that the computation is carried out 
along each individual column (row). There are only two types of computation 
flows (column- and row-directions) involved in the pre-convolution and FFf 
stages. At the back-projection step, the data in the view-detector (V -0) space 
are transformed into a rectangular image space. In a raster scan display, the 
computation flow can be viewed as random input from the v-o space and 
sequential output to an image space. In the most extreme case, the post­
processing may also be treated as random access in the image space. The 
general rule-of-thumb is to provide a flexible architecture to accommodate a 
wide range of image processing. 

Section 3 Parallelizing the Fan Beam Computations 

The time complexity for reconstructing an L-by-L-pixel image from an 
N-view-by-M-detector projection data is O(L2N). To improve the system 
performance at relatively low cost, one promising approach is to explore the 
parallelism of BPR. Given P identical processors (PEs), one would like to 
assign almost equal amount of task to each processor with minimum resource 
redundancy. The first step is to reduce the trigonometric computations by 
using the property of trigonometric symmetry. 

Let kl and Wi be the coefficients evaluated for the reconstruction of 
pixel f(rl, (It) using view data obtained from projection angle f31. Then kl 
and Wi may be reproduced for reconstructing many different pixels lying on 
the same concentric locus. This concept could be derived from Equation (3) 
and (4) by showing that if sin(f3i - Oi) = sin(f31 - Ot) and COS(f3i - OJ) = ± 
COS(f31 - Od, then Wi = Wi and ki = ±k1• The relationship between f3i - 0i 
and f31 - 81 can be expressed as follows: 

f3i - Oi = (f31 - Od, or 

f3i - Oi = 1r - (f31 - Od· 
(5) 

(6) 

Now the N x M projection data array is partitioned into P consecutive seg­
ments in view direction, followed by assigning each segment to a processor's 
local memory, e.g. P £1 holding row I through row N / p, and so on. Then 



www.manaraa.com

119 

Pre-convolution: 
FIT 

I ~ I I --+ I 
1 detecto 

I --+ I -VIew 

1 ! V-D 

I I 
1000 spac 

--+ 

1 BPR 

I Don't care I I Random Input from V - D space ~ I 
Sequential ouput to Image space 

'" I l I -SI 

'" 
! Image 

SI2 space 

I --+ I 
1 Post-Pro. 

I ~ I I Random 1/0 In I 
.mage space 

I 

Figure 3 The directions of dataflow in a view-detector space, 

Figure 4 Eight concentric grid points in a rectangular coordinate. 



www.manaraa.com

120 

Equation (1) can be split into P partial sums as follows: 

NIP N 

f(rl,O) = I: WnDn,k + ... + I: (7) 
n=l 

By keeping all these segmented projection data in local memory, P Ej , for 
i = 1, ... , p, will always be responsible for computing the ith partial sum 
of some pixel f( rl, OJ). Moreover, as long as the Equation (5) holds, 
only one coefficient pair, e.g. (kl, Wl), has to be computed. Naturally, 
a ring-connected processor array would serve the need for accumulating and 
transferring all these simultaneously computed partial sums. 

For image display using raster scan, only the pixels located at the grid 
points of a rectangular coordinate need to be reconstructed. The eight 
concentric grid points (Pl through Ps) shown in Figure 4 can be split into two 
sets: the even-indexed points and the odd-indexed points. From Equation (5) 
one sees that if the odd-indexed points (PI, P." P.3 and P7) use a coefficient 
pair (k, W), then the even-indexed points will use (-k, W). Consequently, 
there are always four or eight grid points lying on the same concentric locus 
and the image is naturally partitioned into eight octants. This allocation of 
image data is particularly useful when ring artifacts are to be removed right 
after the back-projection stage. 

To speed up the back-projection process further, one could introduce 
more PEs, in an increment of eight, to the system. For example, 32 PEs can 
be organized as an 8-row-by-4-column processor array. The projection data 
are partitioned into 32 consecutive segments and assigned to the processors 
in a row-major sequence. Now four boundary units are required to compute 
four pairs of (k, W) coefficients. With each column processors sharing the 
same (k, W) coefficients, up to 32 pixels can be simultaneously reconstructed. 
And, again, the output image is naturally partitioned into 32 suboctant regions 
(see Figure 5). 

Section 4 A Generic Fan Beam CT Architecture 
Based on the current BPR package, a fan beam cr reconstruction 

machine has to compute at a rate no less than 2 billion operations (Le., 
multiplications and additions) per second in order to boost the resolution 
to lOOO-by-lOOO pixels per image at a reconstruction rate of one cross 
section per second. This estimation has not even taken the computation 



www.manaraa.com

121 

Figure 5 Partitioning the entire image into 32 sub-octant regions. 

Figure 6 A 16-node modified orthogonal tree. 



www.manaraa.com

122 

of (k, W) pairs into account. To derive a generic parallel architecture for 
fan beam CT, one has to consider a large category of signal processing 
algorithms that are being used in the current CT reconstruction package. 
The key issues are (1) processor interconnection, (2) distributed memory, 
(3) system control, and (4) system software. Based on the pre-processing 
steps described in Figure 2, it is more favorable to partition the projection 
data along the view dimension; this not only avoids the data transfer when 
computing 10 FFT (which is being used as a convolution filter along the 
detector dimension), but also makes the search of detector values confined in 
each local memory during the BPR stage. However, there are still substantial 
amount of computation involved in interchanging data between processors, 
such as convolution in view direction, BPR (which basically needs a ring), 
and post-processings. Intuitively, one sees that an architecture based on the 
mesh-connected topology would probably meet most of the needs. However, 
for reasons soon to become clear, we introduce a modified orthogonal trees 
(MOT) as a superset of the mesh- and ring-connected architectures. 

A conventional orthogonal tree (also called mesh-of-trees) is constructed 
by organizing a processor array into columns of trees and rows of trees. 
It was originally proposed as a general-purpose parallel computer ideal for 
VLSI implementation [5], which has only recently been received as a vision­
processing architecture [6]. An MOT is formed by combining these subtrees 
into one column tree and one row tree (see Figure 6). Let P be a power of 2. 
In [5] it is shown that when P processors are connected to the leaf cells of a 
tree, they can be viewed as being interconnected into a ring and are able to 
rotate data in O(log P) time steps. The key advantage of this configuration 
is that it may bypass any length of masked processors in O(log P) time. 
Likewise, when an pl/2 X pl/2 processor array is interconnected by an MOT, 
it becomes very reliable and dynamic. Below are some useful computation 
structures based on a P-node MOT network: 

1. Mesh-connected arrays are formed when P processors are connected to 
the leaf cells of the column and row trees according to some predeter­
mined column and row sequences. 

2. Given a tree with P leaf cells, up to 2J. P / 2- 1) of different node sequences 
in the same ring can be formed. Therefore when two orthogonal 
trees are overlaid as a P-node MOT network, the number of possible 
interconnection patterns is 2(P-2). 

3. Fault-tolerant arrays of fixed structures (such as mesh array) can, in 
general, be handled as follows: 



www.manaraa.com

123 

a. reject the faulty node by simply disconnecting it from the MOT; 
b. explore a new set of fault-free nodes that can preserve the intercon­

nection topology; 
c. if spatial reconfiguration is impossible, then use time redundancy to 

implement the remaining connections at a second phase. 

In the literature there is a great deal of fault-tolerance-related research based 
on the mesh-connected array. Because of the scope of this paper, we shall 
only focus on the construction of MOT and on the principles of partitioning 
image-processing tasks based on this type of architecture. 

A Binary Tree Implemented with Shuffle Busses 

Because of the O(log P) time steps involved in moving data from node to 
node, it is very desirable to speed up the data transfer rate in an MOT network. 
In [7] we designed a shuffle bus that can be viewed as a bidirectional, 
word-parallel, pipeline bus using a programmable swapping mechanism to 
achieve data redistribution. A binary tree-structured shuffle network (BTS) 
is configured as having each of the parent nodes connected to a left child 
(Lc) and a right child (Rc) via a multiplexer and a shuffle node. To operate 
as a ring bus, the links of its BTS are separated into two groups (Lc and 
Rc) and alternately activated. In Figure 7 we show that two sets of data, say 
{a,b,c,d} and {e,f,g,h}, can be rotated in a pipelined fashion. The tree has 
one additional shuffle node preceding the root. Immediately after the first set 
of data are loaded, all the left edges are activated (designated as L-operation) 
and rotations are done in each of these shuffle bus segments. It is then 
followed by an R-operation, where all of the right edges are activated and 
another rotation is carried out in each of these segments. At the beginning of 
the third cycle, a second set of data, {e,f,g,h}, are loaded to the leaf nodes. 
Although four macro-steps are needed to finish the rotation of each data set, 
its throughput rate is doubled by keeping two data sets on the same BTS. To 
reverse the rotation direction, the R-operation is executed first, then followed 
by the L-operation; it is repeated in this manner until the desired number of 
shifts is achieved. Note that, for a P-node ring bus to be implemented on a 
BTS, the longest linear shuffle segment is log P + 2. Hence the time it takes 
to do one rotation is 4(10g P + 1) Ts' where Ts is the swapping time between 
adjacent nodes. Note that typical Ts on shuffle bus is around 5 ns. 

To further speed up the ring interconnections on a BTS, one could form 
a wraparound BTS, as shown in Figure 8, where each leaf node is connected 



www.manaraa.com

124 

~ )~] 

trn tiJ~~ 
~ ,Gl ~ }w 

rn~~ m~~ 
Figure 7 Pipelining two data sets on a binary shuffle tree. 

o 1 345 6 7 

Figure 8 A wraparound binary tree. 



www.manaraa.com

125 

to a corresponding intennediate node such that the original linear segments 
are now fonned as small rings. In so doing, each R- or L-operation is 
finished in one clock. This speedup reduces the ring bus cycle time from 
4(1og N + l)Ts to 4Ts. 

The selection of MOT as an interconnection network for cr parallel 
processors has been based on two criteria: (1) it should be reconfigurable 
to include a wide range of cr post-processing algorithms (besides the ones 
shown in Figure 2) and (2) the operation of data transfer over the network 
should be simple and easy to maintain. As mentioned before, a P-node 
MOT can be configured up to 2P - 2 different interconnection patterns, which 
is done by programming the control codes applied to the multiplexers that are 
used to direct the intennediate tree nodes. To ease the system control and 
programming issues, the network is monitored by an independent control 
agent, which implements, from task to task, a configuration table either 
prepared during compile time or dynamically scheduled at run time. The 
processors only talk to the network through local FIFOs. For nonsystolic 
type of data transfers, the data elements (or packets) can be tagged with 
destination codes. Then by traversing (or recirculating) data through the 
rings, the system can be programmed as a dataflow machine. 

Partitioning Image Processing Tasks 

Because of a large volume of input (or intennediate) data involved, 
it is more favorable to obtain parallelism by partitioning the input data and 
allowing each processor to work on its own subimage. For example, a smooth 
systolic 20 convolution-like algorithm requires that the convolution size be 
equal to the number of processors. By partitioning the entire image into 
subimages and storing each subimage in the local memory of a separate PE, 
one can derive a semi systolic dataflow that is not hampered by heavy cross­
boundary data transfers. In general, the image processing can be categorized 
as follows: 

1. For algorithms that are homogeneously applied (by sliding an operation 
kernel) across the entire image, each processor is assigned to work on 
its own subimage. When it comes to crossing a subimage boundary, 
the kernel is split into 2 (for 10 image partition) or 4 (for 20 image 
partition) wraparound subkernels within the subimage area of each PE. 
Hence, rather than shuffling input data across the processor boundaries, 
intennediate results are forwarded to their destination processors. The 



www.manaraa.com

126 

network traffic problem is solved by evenly distributing the same amount 
of traffic over the entire computation period. 

2. For heterogeneous operations, PEs are normally assigned with different 
tasks; intermediate results are combined in a dynamic fashion; and the 
processors are dynamically grouped into separate rings to carry out 
independent tasks. A dynamically reconfigurable network is essential 
for this type of image processing. On the other hand, preserving 
the locality of these image processors is also highly desirable, since 
such property helps to confine the local traffic in the local region of a 
network. In the most extreme case, all of the PEs are grouped to form 
a pipeline architecture and the memory banks are coordinated by one 
memory controller. The advantage of this approach is to avoid irregular 
partitioning of original data such as the case of rebinning in particular 
or image warping in general. 

Examples of the first category are cr back-projection reconstruction, con­
volution, and pattern matching; examples of the second category are FFf, 
histogram computations, image warping, and interpolation. 

Section 5 Conclusions 

In this paper we show that the conventional fan beam cr algorithms 
can be parallelized by sharing the (k, W) pairs with eight processors. We 
also proposed an 8-node ring as a fundamental processor module to make 
use of this inherent concurrence. To include a wide variety of image 
post-processing algorithms, we took a further step by upgrading the one­
dimensional ring to a two-dimensional MOT network. By establishing quick 
bypassing paths through the trees, the processors can be dynamically grouped, 
thereby facilitating global communications. On the other hand, since a tree 
can be decomposed into subtrees, the locality of smaller rings is also well 
preserved. 



www.manaraa.com

127 

Bibliography 

[1] J.E. Wheeler, et al. "Instant Computed Tomography Reconstruction". In 
Internal Document of General Electric Company, April 1984. 

[2] Hui Pengo "Fan Beam Reconstruction in Computer Tomography from 
Full and Partial Projection Data". PhD Dissertation: Rensselaer Poly­
technic Institute, New York, 1988. 

[3] G.T. Herman, et al. "Convolution Reconstruction Techniques for Diver­
gent Beams". Computer of Biologic Medicine, 6(10), October 1976. 

[4] B.K. Gilbert, et al. "Rapid Execution of Fan Beam Image Reconstruction 
Algorithms Using Efficient Computational Techniques and Special 
Processors". IEEE Tran. Biomedical Engineering, BME-28(2), Feb. 
1981. 

[5] J.D. Ullman. "Computational aspect of VLSI". Computer Science Press, 
1984. 

[6] Quentin F. Stout. "Mapping Vision Algorithms to Parallel Architectures". 
In Proceedings of the IEEE, volume 76, August 1988. 

[7] W.T. Lin and J.P. Hwang. "A High-Speed Shuffle Bus for VLSI 
Arrays". IEEE Journal of Solid-State Circuits, February 1988. Also in 
the Proceedings of the 1987 Symposium on VLSI Circuits, Karuizawa, 
Japan, May 1987. 



www.manaraa.com

6 
Affine Permutations of Matrices on 

Mesh-Connected Arrays 

Bjorn Lisper 
Department of Telecommunication and Computer Systems 

P.O. Box 70043 
S-100 44 Stockholm, SWEDEN 

bjornl@tds.kth.se 

Sanjay Rajopadhye 
Computer Science Department 

University of Oregon 
Eugene, OR 97403-1202, USA 

sanjay@cs.uoregon.edu 

Abstract 

We present methods to permute matrices in mesh-connected uniform 
square arrays with local control only. The permutations that we consider 
form a class called affine permutations, which includes transpose and 
many other row/column reorderings. We first present a general scheme 
where destination tags are generated on the fly, and a standard sorting 
algorithm on the mesh is used to route the elements to their respective 
destination. We then specialize to four operations: in-place reflection, in­
place rotation, and on-the-fly versions of these (that permute the matrix 
while it is loaded into the array), and show how they can be implemented 
very efficiently with local control only. We also develop a general theoret­
ical model for prescheduled data transfers in distributed systems. This 
model can be applied to permutations, and we use it to verify one of the 
specialized operations. 

1 Introduction 

Parallel computing invariably includes the transmission and rearrangement of 
large quantities of data. Solutions to the communication problem range from 
global but not very scalable solutions, like buses, through somewhat more scal­
able solutions like interconnection networks [Sie85]. to local but scalable point­
to-point connection schemes. There is a corresponding range in the type of 
parallellism exploited, from large-grain computation on a few, powerful pro­
cessors to fine-grain computation on many simple units. The development of 



www.manaraa.com

130 

VLSI technology has stimulated research at the latter end of the spectrum. The 
following properties are desirable for on-chip integration of parallel systems: 

• Regular layout. If the system consists of many similar units (or cells), the 
layout for the cell can be replicated. Thus, uniformity is desirable. 

• Local communication. If the system has nearest-neighbour connections 
only, then long, area-consuming wires with large capacitance are avoided. 
Thus, the absence of such wires will make the circuit more compact and 
also enable it to run faster. 

• Local control. Local communication also implies local control, possibly 
with the exception of a global clock. This restricts the possible actions 
of cells, since control information must reach a cell before it can change 
the cell's behaviour. 

• iD and 2D topologies. VLSI chips are essentially planar surfaces. Only 
one and two dimensional topologies can be laid out on planar surfaces 
without violating the nearest neighbour restriction. Regular ID topolo­
gies are linear arrays and rings. Regular 2D topologies are mesh con­
nected arrays, possibly with diagonal connections. 

• I/O restricted to boundaries. Locality of communication implies that I/O 
can take place only at the boundary of the array. This is a constraint 
both on data and control. 

Together, these properties define the concepts of synchronous systolic ar­
rays [KLSO] and asynchronous wavefront array processors [KunSS]. Systolic 
(wavefront) array implementations have been suggested for many algorithms, 
especially in areas like linear algebra and image and signal processing. See 
for instance [MMJS9,MMUS7]. There has also been a great interest in for­
mal methods for synthesizing systolic implementations of regular algorithms, 
especially by space-time mapping methods [CSS4], [CheS6], [DI87] , [HL87], 
[JRK87], [RFSS5], [LisS9], [MW84], [MoIS2]' [MFS6], [QuiS4], [RKSS], [RajS9]. 

With the exception of [DIS7], where systems of coupled recurrence equa­
tions are considered, the work in the field of synthesis has concentrated on 
implementations of single algorithms. The question immediately arises, how­
ever, how to interface different systolic algorithms. Such interfacing could take 
place in space, i.e. connecting several systolic arrays into one system, or in time, 
i.e. combining different operations taking place in the same array at different 
times, or a combination of both. 

If two systolic arrays are linked, some transformation of the output of the 
first must usually be done to fit the input pattern of the second. n output 
elements can be transformed by interconnection networks with O(n log n) bi­
nary switches [Sie85] to provide the proper inputs to the next array, but these 
networks are not amenable to VLSI implementation. Cellular permutation net­
works with up to n 2 switches [00S7] are better suited for this, but they are 
costly in space and the capability to perform general permutations is often not 



www.manaraa.com

131 

needed for interfacing systolic computations. It is also wasteful to have one 
input for each element. For systolic array operations, O(n) inputs are usu­
ally required to arrive in a pipelined fashion of O(..jTi) streams with O(..jTi) 
elements each. Thus, a pipelined network with O(..jTi) inputs and outputs is 
better suited to interface systolic arrays. Some pipelined interfacing operations, 
like transposition of streams, were considered by O'Leary [O'L87]. Optimiza­
tion of a class of pipelined buffers for the interfacing of systolic arrays has been 
described by Wah, Aboelaze and Shang [WAS88]. 

Interfacing of systolic computations taking place in the same array has not, 
to our knowledge, been described, but related work has been done for data 
permutations in mesh-connected SIMD computers [Fla82,NS80]. In SIMD sys­
tems, however, the conditions are not the same as for systolic/wavefront sys­
tems. In SIMD machines the program flow of each processor is centralized, 
which is not in accordance with the systolic demand on local control. On the 
other hand, all the processors in a SIMD system must perform the same oper­
ation at a given time, which does not necessarily hold in a systolic/wavefront 
type system where a new instruction, or a control signal, may flow through and 
cause the processors on its way to change behaviour. 

In this paper, we will consider affine permutations of matrices on a mesh­
connected square systolic or wavefront array. Such permutations arise often 
in practice: examples are matrix transpose and many row and column re­
orderings. All the operations described here can be implemented in a systolic 
fashion with local control only. We will consider two types of permutations: 
in-place permutations, where data resides in the array before and after the op­
eration, and "flow" permutations, where the rearrangement of data is carried 
out "on-the-fly" while being loaded into the array over a boundary. By a simple 
transformation, the latter class of operations can be used for on-the-fly permu­
tations while unloading the data as well. This type of conversion provides an 
alternative to the interfacing of arrays with separate buffers. 

The remainder of this paper is organized as follows. In Sec. 3 we shall 
describe a general technique that enables us to perform arbitrary affine per­
mutations of square matrices. We then describe a few drawbacks of this ap­
proach, and identify four transformations that are important from a practical 
viewpoint. Then, in Sec. 4, we develop a theoretical framework for reasoning 
about ensembles of data storage elements that can route data locally amongst 
themselves. The theory is general enough to describe any prescheduled data 
transfers. Sec. 5 then describes an architecture for reflecting a matrix in-place, 
and illustrates how the theory can be used to verify the correctness of the 
implementation. This architecture is further refined in Sec. 6 so that the im­
plementation uses only local control; an array for on-the-fly reflection is also 
presented. The next two sections present arrays for rotation. Finally, we 
present our conclusions. 



www.manaraa.com

132 

2 Preliminaries 

In this paper we will use binary relations and operations on them. A binary 
relation R over a set A is a subset of Ax A. If (a, b) E R we write aRb, and 
we call a an immediate predecessor of b. Every binary relation R over A can 
be seen as a directed graph (A, R), where there is an edge from a to b exactly 
when aRb. The transitive and reflexive closure of R is denoted R·: it holds that 
aR· b exactly when there is a path of length;::: 0 in (A, R) from a to b. For any 
relation R on A and elements a, b in A we define nCR, a, b) = {c I aR· cR· b }, 
i.e., the set of intermediate nodes in all paths from a to b. 

Zn denotes the ring of integers modulo n, Zn = {O, 1, ... , n - I}, with 
binary operators +n (addition modulo n) and· (multiplication modulo n, also 
denoted by (ab)n). Since Zn is a ring, multiplication does not have an inverse, 
although many elements are invertible (precisely those that are relatively prime 
to n, there are as many as O(n) of them). Z~x" denotes the k x k matrices 
whose elements are in Zn. We can define matrix addition and multiplication as 
ususal-all scalar additions and multiplications are modulo n. The determinant 
IMI of a matrix in Z~Xk can also be defined. It is easy to show that Z~Xk is 
also a ring, in which an element M has an inverse iff IMI has an inverse in Zn, 
and that there are O(nk2) such elements. 

In designing systolic arrays, one typically starts with an initial algorithm 
that specifies the problem. This algorithm is normally expressed as the com­
putation of a function at all points in an index-space (viz the integer lattice 
points in a subset of Euclidean space). A mathematical description of such an 
algorithm is given by the following definition. 

Definition 1 A Recurrence Equation over a domain Vn is defined to be an 
equation of the form 

where P E V n .. Vn is a convex polyhedral subset of zm 
n is a size parameter 

qi E Vn for i = 1 ... k .. 
and g is a single-valued function, strictly dependent on 

all its arguments. 

A system of recurrence equations is a set of I mutually recursive such equa­
tions, defining functions h, h, ... fl. 

A Recurrence Equation of the form defined above is called a Uniform Re­
currence Equation (URE) if qi = P + bi, for i = 1, ... , k, where the bi'S are 
constant m-dimensional integer vectors. It is said to be an Affine Recurrence 
Equation (ARE) if for i = 1, ... , k, qi = A,P + bi, where the Ai'S are constant 
m X m integer matrices, and bi 's are constant m x 1 integer vectors. 

A modular affine recurrence equation (MARE) is an ARE where Vn = Z::" 
and for i = 1, ... , k, Ai E z::,xm, and bi E Z~Xl. A MARE where bi = 0 is 
called a modular linear recurrence equiation (MLRE). Note that since a total 



www.manaraa.com

133 

order cannot naturally be defined over rings, it does not make sense to talk 
about inequalities, and hence about convex polyhedral domains. The domain of 
computatin for MAREs and MLREs is thus taken to be the entire index space, 
Z~ (which is finite). 

3 An Architecture for arbitrary modular affine 
permutations 

The problem of implementing systems of affine recurrences (AREs) on reg­
ular, systolic arrays has received considerable attention. It has been shown 
[RF90,RK88] that systolic arrays are characterized by systems of recurrences 
that have uniform rather than affine dependencies, (such uniform recurrence 
equations (UREs) form a proper subset of AREs-where the linear part of the 
dependency is the identity). There has therefore been an effort towards auto­
matically converting AREs into equivalent UREs. The case when the affine map 
is rank deficient has now received a satisfactory answer (see [Raj89], [QV89], 
[WD89], [RTRK88] for example). There has also been work addressing the case 
when the dependency is non-singular. Culik and Fris [CF85] describe a tech­
nique called "folding of the plane" which has been extended by Yaacoby and 
Cappello [YC88] to a "generalized fold," which permits the localization of such 
dependencies. Furthermore, as suggested by Roychowdhury et al. [RTRK88], 
a non-singular dependency can be converted into a singular one by extending 
the dimensions of the index space, although this approach (often unnecessarily) 
extends the domain of computation. 

While it is an interesting problem to investigate how the localization meth­
ods mentioned above can be extended to MAREs and MLREs, in this paper 
we shall only consider a particular subclass of MAREs, namely those with a 
single, invertible dependency, A. The recurrences that we study have the form 

f(p) = f'(Ap+ b) 

Such MAREs capture the essence of non-singular modular dependencies, 
and the architecture that we propose here can be easily adapted to arbitrary 
MAREs where there is more than one dependency and the computation is 
not merely the identity function. Moreover, unlike the previous work, we are 
interested in deriving a single architecture that can implement this entire class 
of MAREs. Because of practical considerations, we consider the domain to be 
two-dimensional, although our architecture can be easily extended to higher 
dimensional domains. Thus, our problem may be specified as follows: Given a 
square n x n matrix, M compute the n x n matrix N given by 

(1) 

As mentioned earlier, we are interested in designing two variants of the final 
architecture - one for the case when the input matrix is being fed into the 
array, and one for the case when the matrix has already been loaded into the 
array. Moreover, we are interested in achieving this without the use of any global 



www.manaraa.com

134 

control (for example, the decision to start a certain computation is made by a 
processor solely through some control signals which may only be propagated 
locally). 

The problem that we are addressing is a proper subset of the permutation 
routing problem: given a processor array where each processor has a data packet 
and a destination address (based on a 1-1 permutation of the processor labels), 
determine an algorithm to route all the packets to their correct destinations. 
Our problem is a proper subset in the sense that since there are only O(n4) 
distinct non-singular dependency matrices, and only O(n2 ) distinct vectors, b, 
the total number of permutations that we consider is only O(n6 ), which is a 
very small fraction of the n2 ! possible permutations. It is well known that 
the routing problem can be directly solved by sorting on the destination ad­
dresses. Algorithms for achieving this in O(n) steps have been presented by 
Kung and Thompson [TK77], and also by Nassimi and Sahni [NS79]. Recently 
Leighton et a1. [LMT] have given a time-optimal algorithm that uses 2n - 2 
steps and constant local memory. In most of this work however, it is assumed 
that the destination addresses are initally present in the processors. This is 
a valid assumption if the processor array is being used to simulate a PRAM 
(a shared memory random access parallel machine), but is not very practical 
in our context. Indeed, if the permutations are determined off-line, there may 
be considerable effort involved in simply informing each processor of the des­
tination of it packet. The architecture that we present is essentially an array 
that achieves this "address calculation" task in 2n time steps. By a simple 
modification, this can be reduced to n. After this initial stage, the Leighton et 
a1. routing algorithm is used to achieve the desired permutation. 

Since our permutation is an affine permutation, the final destination of 
the matrix element at processor [i, jf is A[i, j] + b. Note that this is an 
affine function of the processor c<rordinates, [i,j]. Thus, if we design a mesh 
connected processor array where each processor computes an affine function of 
its space c<rordinates, the result of this computation is precisely the address 
tag that we need to sort on. Hence we will first design a square systolic array 
where each processor can compute an affine function of its c<rordinates. We 
must do this without having the processors to use any global information, and 
without explicitly "informing" the processors of their locations (otherwise the 
processors cannot be considered to be identical). Our method is based on the 
following observation, which follows directly from distributivity of our ring. 

Remark 1 Given, x = A[i, j]T + b, the value of an affine map at a point, 
[i, j]T, for any constant vector p, the value of the affine map at [i, j] + p is 

x+Ap 

Since p is a constant vector, so also is Ap, and this indicates that at all 
points in the domain, A[i,j] + b can be computed incrementally. The idea is 
similar to the data pipelining techniques proposed by Rajopadhye [Raj89], but 



www.manaraa.com

i i 
mo,O 

ml,O mO,1 

m2,O ml,l 

mn-I,O mn-2,1 

mn_l,l 

i 

rnO,2 

m n -3,2 

m n _2,2 

m n -I,2 

i 

mO,n-1 

ml,n-l 

m2,n-l 

mn-l,n-l 

135 

igure 1: Using data pipelining to compute the destinations of the matri 
lements 

here we are interested in computing the dependency itself. As in the case of 
data pipelining, we must choose vectors p which form a basis for the space that 
we want to span, i.e., index space [i, j]. In our case we simply choose the two 
vectors [0,1] and [1,0]. We also observe that A[O, 0] + b is b, so we can simply 
use the translation part of the affine map to "initialize" the pipeline. 

As a result, we obtain the architecture shown in Fig 3, which consists of 
a square array on n x n processors and an extra row below it. All processors 
(in the n x n square) have an accumulator in which they can store the two 
coordinates of an index vector, and an output register (going vertically up) 
which can store similar index values. They also have arithmetic hardware that 
can perform addition of such co-ordinate values (modulo n). They all have an 
input bus connected to the output register of the processor immediately below, 



www.manaraa.com

136 

and behave as follows. They start computing when they recieve a start. control 
signal from the processor immediately below them (this signal is propagated 
upwards at a speed of one processor per clock cycle). When they get the 
start signal, they load their accumulator and output register from the input 
bus. From then on, at each clock tick, they add the value on the input bus to 
their accumulators and also latch it on the output register. They stop when 
they receive another control signal (from their left neighbor, propagated to the 
right at a speed of one processor per clock cycle). The stop signals reach all 
the processors in a column at the same time, and are synchronized to reach a 
column exactly one time unit after the topmost processor has received the start 
signal. Thus, by the time that the stop signal arrives, the topmost (zero-th) 
processor has performed no additions on its accumulator, the next one (first) 
has performed one, and the i-th one, i. Given such operation of the processors, 
it is clear that if the very first input (i.e., the input that arrives with the start 
signal) to the i-th processor in the j-th column is A[O, j] + b and all subsequent 
inputs are at A[I, 0], this will also be true for the processor immediately above 
it, and hence, inductively for the entire column (provided we can show that it 
holds for the base case - the (n-I)-th row). Thus, by the time the stop signal 
arrives, the i-th processor will have added A[I,O] i times to A[O,j] and hence 
will have computed, A[O, j] + b + i * A[I, 0], i.e., A[i, j] + b, which is precisely 
what is required. 

The bottom row of processors is used to ensure that the base case mentioned 
above holds. These processors are responsible for computing A[O,j] + b for 
their respective columns. Each processor has an accumulator and an output 
register, and has two inputs (from the accumulator and output register of its left 
neighbor, respectively). The accumulator also serves as input to the processor 
immediately above it. The processor begins computing when it receives a 
control signal from its left neighbor (the control signal is sent to the right as 
well as upwards). When it receives the start signal, the processor loads its 
accumulator with the sum of its two inputs and its output register with the 
value of the second input. From then on, it simply loads its accumulator from 
the first input. Thus we want the following invariants to hold: 

• At the end of the first operative clock cycle (i.e, the cycle in which the 
start signal arrives) of any processor in this row, its accumulator contains 
A[O,j] + b and its output register contains A[O, 1] . 

• At all subsequent times, its accumulator contains A[I, 0]. 

Proving this inductively is straightforward, given the operation of the pro­
cessors above. The base case will be ensured if the first and second inputs to 
the leftmost processor at the first time instant are b - A[O, 1] and A[O, 1] re­
spectively (their sum will then be b which is exacltly what is required), and the 
first input is A[I, 0] from then on. Alternatively, the first set of inputs could be 
band A[O, 1] and the processor be specialized so that it performs no addition 
at the first time step. 

In the above architecture, we have used an extra row of processors, but this 
was done merely to aid the exposition. Since the computation performed by 



www.manaraa.com

137 

the bottom two rows is mutually exclusive (as is the hardware needed for it), 
we very easily merge their functionality into one processor. This one again has 
two registers, ace, and out, and can read the two registers of its left neighbor. 
Moreover, the input bus of the processor above it is connected to both, ace and 
out thhrough a multiplexor. When it gets the control signal, it loads ace with 
the sum of its two inputs, the out register with its second input, and sets the 
mux so that the processor above will read the contents of ace on the next cycle. 
From the next cycle on, it adds the second input to ace and also loads it into 
out and sets the muxso that out is sent to the processor above it. 

We thus have an architecture which enables a square mesh-connected array 
to compute a modular affine map of the processor space. Such an array could 
be used with only a simple modification, for either of the two variants - for 
the case when the data is not already present in the array, we will simply need 
to provide an additional register in each processor for the actual data values 
(such a register is needed to store the data value, in any case). When the start 
signal arrives, the processor begins to simply propagate the incoming data, and 
when the stop signal arrives, it merely latches the input data into this register. 

The next phase is to actually route the data to their correct destinations by 
sorting the tags computed in the first part". To do this we use the Leighton et 
al. routing algorithm. It may seem at first glance that becuase the destination 
values are computed incrementally over the array, it is possible to overlap the 
routing phase with the destination computation. However, this is misleading, 
and does not improve the performance. In the worst case, the very last address 
that is computed (at PE [n - 1, n - 1]) may turn out to be [0,0], so 2n - 2 
additional time units are needed and this is how much the routing algorithm 
would have taken if everyone started routing at this instant. 

The time required for the address calculation phase is 2n steps. However, 
this does not fully utilize the available boundaries. Indeed, the maximum 
distance of any point from a boundary is n/2, and if we partition the problem 
into four independent problems, one for each quadrant, and have the processors 
propagate the results in the appropriate directions, the time can eb reduced to 
n steps. 

3.1 Specialized Architectures 

The architecture presented above is general in the sense that it can perform 
arbitrary affine permutations of square matrices. However, there is a price to 
be paid for this generality. The time complexity of the arrays is larger - the 
time required to compute the destination addresses is 2n, and the additional 
time to sort is 2n - 2. Moreover, the array is not easily extensible, since most 
of the computation performed by the processors is dependent on the problem 
size (all the addition is modulo n, and the sorting algorithm requires that the 
processors be aware of their co-ordinates and of n, etc.). We therefore investi-

·Thus the signal that we have called the stop signal so far, merely indicates the start of 
this second phase, and a more accurate name would be sort signal. 



www.manaraa.com

138 

j 

R 

H 

Figure 2: Illustration of 90 degree right rotation and horizontal reflection. 

gate in the remainder of this paper, a small class of specialized permutations. 
In particular, we consider permutations consisting of reflections and 90 degree 
rotations. We anticipate that such transformations will have practical appli­
cations in fast manipulation of frame buffers and in image processing. We 
first note that because the space of such permutations forms a group, all the 
transformations can all be performed simply by composing the generators of 
the group. Specifically, the two basic permutations that we shall use as our 
generators are (note that all arithmetic operations are modulo n): 

• 90 degree right rotation (assuming a coordinate system with j increasing 
to the right and i increasing downwards, as shown in Fig 2 below. 

(2) 

• Horizontal reflection (about the middle of the array): 

(3) 

As an example, matrix transposition (i, j) t-+ (j, i), specified by the affine 
map 



www.manaraa.com

139 

can be implemented as a right rotation followed by a horizontal reflection. 
It can also be seen that 

For both of these permutations, we are interested in designing hardware 
structures that can perform them when the data is already in the array (called 
in-place arrays) and when the data is initially off-line (flow-arrays). In the next 
section we outline a theoretical framework for reasoning about prescheduled 
data transfers. The four arrays are described in the four subsequent sections. 

4 Prescheduled permutations of data 

Efficient specialized architectures for a certain permutation can be found if the 
data transfers are prescheduled. When the data transfer pattern in decided 
upon in advance, the architecture can be tailored to perform that particular 
pattern efficiently. Usually, much of the control overhead can then be avoided. 
In this section we will hint at a theoretical model to describe permutations 
of data through prescheduled data transfers. The details can be found else­
where [LR]. We will use this model to verify some of the presented specialized 
permutation architectures. 

In general, we are interested in permutations of indexed data fields a( i), 
where i belongs to some finite index set I. The permutations are then per­
mutations of the index set. We view data as being stored in memory and 
permutations taking place there. Thus, we assume an address space M. An 
address in M could possibly consist of several fields: in a distributed system, 
one field may give the processor location and another field a local memory 
address. 

We do not, however, want to restrict the theory to permutations from ad­
dresses to addresses. In a systolic array, for instance, data fields may flow over 
boundaries and permutations may have to take place between flows. Since a 
flow of data indicates different data appearing at the same place at different 
times, this means that the temporal aspect also is important. Here we re­
strict our attention to synchronous systems: an event in such a system can be 
identified with an address and a discrete time. If we take the times to be the 
nonnegative integers {O, I, ... } = N, then the set of all events is the address 
space-time N x M. Instead of associating a datum statically with an adress, we 
can identify it with events in address space-time which enables us to describe 
systems where data fields move. Especially, we want to specify "interfaces" 
in address space-time where each item in a data field has a unique space-time 
coordinate. Such interfaces specify where and when data is input, and where 
and when data is to be picked up. This leads to the following definition: 

Definition 2 An injective function from an index set to an address space-time 
is a space-time mapping of the index set. 



www.manaraa.com

140 

If i is mapped to 4>(i) = (t, m) by a space-time mapping 4>, the interpretation 
is that a data item a( i) indexed by i is to occur at memory address m at time 
t. Next, we need a way to specify how data is propagated in (a possibly 
distributed) memory with time. 

Definition 3 A relation -+ on the address space-time N x M is a transfer 
relation if it fulfils the following: 

1. For all (t,m), (t',m') in N x M, (t,m) -+ (t',m') ~ t < t'. (causality) 

2. -+ is a forest. (uniqueness of source) 

The transfer relation -+ connects s to s' iff s -+ * s'. Transfer relations are 
used to model prescheduled movements of data. Intuitively, if (t, m) -+ (t', m'), 
then the data item stored in address m at time t becomes stored in m' at time 
t'. The causality property in Def. 3 rules out the transfer of data backwards in 
time. Forests are disjoint unions of trees: thus, elements in forests have unique 
immediate predecessors. Property 2 then ensures that two different data items 
never are written to the same address at the same time. When an address 
space-time event is connected to another event there is a transfer relation path 
between them, which means that data will be transferred from the first to the 
second in a number of steps. 

Definition 4 Let 7r be a permutation of the index set I. Let 4> and 'Ij; be 
space-time mappings from I to an address space-time. Let -+ be a transfer 
relation on the address space-time. Then -+ implements 7r with respect to 4> 
and 'Ij; if the following holds: 

1. For all i E I, 4>(i) -+* 'Ij;(7r(i» (Connectivity). 

memory space 

Figure 3: A space-time mapping, <I>. 



www.manaraa.com

141 

2. For any i,j E I, =f. j, n(->,4>(i),¢(1r(i))) n n(->,4>(j),¢(1r(j))) 0. 
(Disjoint paths) 

Property 1 says that there is a (unique) path in -+ from 4>(i) to ¢(1r(i)), i.e. 
the value, say a(i), at 4>(i) will be copied to ¢(1r(i)). Property 2 states that the 
paths between different input and outputs never overlap. Thus, a value that 
is input will never overwrite a value being transferred to an output through 
the transfer relation. Def. 4 can be visualized by a "commuting diagram" 
(see Fig. 5. We refer to 4> and ¢ as the input and output space-time maps, 
respectively, and say tp.at 4>, ¢ and -> constitute a "space-time permutation". 

Property 2 allows the possibility that s -> 4>(i) for some s. This may seem 
somewhat awkward, since a strictly operational interpretation of -> would im­
ply the value from s being transferred to 4>( i) with a resulting write conflict. 
The problem is, however, only in the interpretation. The correct interpretation 
is that the data input at 4>( i) overwrites whatever should have been transferred 
to there. We have chosen the definition here because of its mathematical sim­
plicity. 

The model of transfer relations also can be used to reason about other 
types of data transfers than permutations. To show that a value is broadcast, 
for instance, amounts to finding a path from the event where it is input to the 

~ 

8 .­..... 

5 

1 

3 5 memory space 

(1,3) is connected to (5,5). 

Figure 4: A transfer relation connecting two points in address space-time. 



www.manaraa.com

142 

respective events where it is to be present. 
An interesting task is to verify that a given transfer relation really imple­

ments a permutation w.r.t. two space-time mappings. Typically, the transfer 
relation will then be derived from some more or less formal description of the 
architecture implementing the permutation. Such a verification is carried out 
in section 5, where the transfer relation is specified on a case by case basis, 
through a set of linear inequalities informally derived from the supposed ac­
tion of an array of processing elements. The verification essentially amounts to 
showing that there is a transfer path in address space-time from any input to 
its output. 

Transfer relations can describe both a desired action of an architecture, i.e. 
constitute a specification, and describe the actual action of a given architec­
ture. An example of this is found in section 5. This opens up the interesting 
possibility of synthesis, through refinement of "specification" transfer relations 
into "implementation" transfer relations. More formally, we say that a transfer 
relation --+1 is implemented by the transfer relation --+2 iff any path in --+1 is a 
path in --+2. 

A transfer relation that describes an implementation must be reasonably 
close to the implementation. First, in a synchronous memory system the con­
tents of a memory cell is copied and re-stored every clock cycle. Thus, if 
(t, m) --+ (t', m') it must hold that t' = t + 1 when -> describes such a system. 
We call this property temporal locality. Second, a memory cell could possibly 
not be connected to all other memory cells. Especially, we are interested in 
systems where there is a spatial locality and a memory cell is connected to 
nearest neighbours only. Spatial locality constraints often arise in distributed 
systems, where an address is divided into a processor address and a local ad-

time 

memory space 

Figure 5: "Commuting diagram" for an implementation of a permutation. 



www.manaraa.com

143 

dress. We call an address space processor-decomposable if it can be written as 
a cartesian product P x L. If the relation ..... on P describes spatial locality 
amongst processors, then we call the transfer relation --+ spatially local w.r.t . 
..... iff (t, (p, I)} --+ (t' , (pi, I')} always implies p ..... p'. We finally say that --+ is 
implementable w.r.t ...... iff it is temporally local and spatially local w.r.t ....... 

A locality constraint can also be imposed on the control of a memory system. 
We want to model systems where the only global control signal is the clock, 
and the behaviour of a processor (or cell) is completely controlled by locally 
propagated signals. Certain cells are boundary cells; they can recieve external 
control signals and pass them on. Denote the set of boundary cells by B, and 
the distance from B to the cell p, i.e. the shortest +-+-path from any cell in B to 
p, by d(B,p). Then p can clearly not be affected by an external control signal, 
arriving at time t, before t + d(B,p). This gives a restriction on the transfer 
relations that such a system can implement, since a cell in such systems must 
recieve a control signal to change its behaviour. The issues of verification and 
synthesis are treated more in detail in [LR]. 

In the following sections, we use the concepts defined here to describe a 
number of permutation operations of a two-dimensional n x n mesh-connected 
processor array, and to verify one of the operations. In such an array, an 
address consists of a local address and a two-dimensional processor address 
(x, y): 0 :5 x, y :5 n - 1. Every local address corresponds to a local register. 
Two processors (cells) (x,y), (x',y') will be adjacent (Le. (x,y) +-+ (x',y'» 
whenever Ix - x'i + Iy - y'l :5 1. The distance between two cells (x, y), (x', yl) 
is simply Ix - xii + Iy - vi. (x, y) is a boundary cell if x = 0, x = n -1, y = 0 
or y = n - 1. A cell (x, y) then has the distance x, n - 1 - x, y and n - 1 - y 
to the respective boundaries, with corresponding restrictions on the control. 

5 Architecture HI: Horizontal Reflection of a 
Stored Matrix 

In the data transfer model developed in the previous section, the in-place, 
horizontal reflection is specified by the following transfer relation: 

(0, i, i, Acc) --+ (T, i, n - i-I, Acc) (4) 

where the input and output maps are respectively given by cp(i, i) = (0, i, i, Acc) 
and 1jJ( i, i) = (T, i, i, Acc) (for some, as yet unspecified time, T > 0). It is easy 
to see that this is a transfer relation: causality is obvious, because T > 0; and 
since [i, n - i-I] is a permutation of [i, i], --+ is a forest with each arc being 
a distinct tree. 

Our implementation will be a refinement of this relation which satisfies the 
properties of spatial and temporal locality. We first observe, that all the forests 
in the relation may be partitioned into distinct planes that are parallel to the 
i axis. Hence, all transfers could be restricted to the same row of memory 
cells, and therefore, we will design a one-dimensional array of cells which can 
independently perform the horizontal reflection of one row of the matrix. We 



www.manaraa.com

144 

Figure 6: Transfer relation for reflecting the contents of a row of cells 

first informally describe the operation of the array, then express its behavior 
as a transfer relation, and then prove that the transfer relation is a correct 
implementation of Eqn 4. Each processor in the linear array has three storage 
elements, labelled A ee, D Land DR (denoting Accumulator, Data-Left and 
Data-Right, respectively). A cell, y, can read DR of its left neighbor, y - 1, 
and DL of its right neighbor, y + 1. At t = 1, all cells in the left half of the row 
(2y < n) load their DR from Acc of y - 1 (the leftmost cell does an undefined, 
dont-care load), and the right half cells load their DL from Acc of y + 1. From 
then on, the left half cells copy DR of cell y - 1 to their own DR, until t = y, 
do nothing (undefined, dont-care) until t = n - 2y - 1, at which time they 
copy DL of cell y + 1 into their Acc, and then until t = n - y - 1 they copy 
DL of y + 1 to their DL. From t = n - 2y to t = n they must also ensure 
that their accumulator remains unchanged. The right half cells are similar, but 
move data to the left. This yields the transfer relation shown in Fig 6, and it 
is easy to see that the data values Acc of cell y at t = n - 1 is the value that 
was in Acc of n - y - 1 at t = O. The transfer relation is formally defined below 
(Eqns 5 - 14). 



www.manaraa.com

145 

(t = 1 A 2y < n) => (t - 1, y - 1, Acc) -> (t, y, DR) (5) 

(t > 1 At::; y (6) 

At> 2y - n - 2) => (t -1,y-l,DR) -> (t,y,DR) (7) 

(t = 1 A 2y ~ n) => (t - 1, y + 1, Acc) ---+ (t, y, DL) (8) 

(t > 1 At::; n - y - 1 (9) 

At> n - 1 - 2y) => (t -1,y+ I,DL) -> (t,y,DL) (10) 

t = n - 2y-l => (t - 1, y + 1, DL) -> (t, y, Acc) (11) 

t = 2y - n + 1 => (t -1,y-l,DR) -> (t,y,Acc) (12) 

(t > 2y - n - 2 A (13) 

t > n - 1 - 2y A t < n) => (t -1,y,Acc) -> (t,y,Acc) (14) 

To show that the above definition constitutes a transfer relation, we must 
show that it is causal and forms a forest. Causality is obvious from the 
definition, since the RHS of each of the equations above are of the form 
(t -1, m) -+ (t, m'). Moreover, the above definition is an implementation, since 
each of the instances are temporally and spatially local (spatial locality also 
follows from the fact that the relations are of the form (t, y, L) -+ (t', y± 1, L')). 
Hence ---+ is a transfer relation if we can show that it is a forest, i.e., there do 
not exist two distinct points in space-time, (t', y', L') and (t", y", L"), which 
are both related to the same point (t, y, L). To do this, we need to simply 
ensure that for all different equations defining a variable (i.e., equations whose 
RHS is of the form (t, y, Var) , the guards are disjoint. This can be verified 
by straightforward inspection of the regions defined by the (in)equalities: for 
example, the intersection of(t = lA2y < n) and (t > lAt > 2y-n-2At::; y) 
can be seen to be null. 

We will now prove that Eqns 5 - 14 are an implementation of Eqn 4, with 
respect to the input and output maps <jJ(j) = (0, j, Acc) and 'IjJ(j) = (n­
l,j,Acc). We need to show that (O,j,Acc) ->' (n-l, n-l- j,Acc). The RHS 
of this consists of points on the t = n -1 line, and since it involves Acc, this can 
only arise from one of Eqns 11, 12 or 14. Of these, the guard for Eqn 11 is true 
for t = n -1 only at y = 0, and that of Eqn 12 can be true only at y = n -1. At 
all other points, (i.e., (t, y) such that 0 < y < n -1, t = n -1), the value of Acc 
must be as defined by Eqn 14. Now, within the region defined by the guard 
of this equation, we may draw a family of straight lines parallel to (-1,0) 
(corresponding to (t, y) - (t - 1, y)) and these lines correspond to transitive 
closure of ---+ within the region. Because of causality, these lines must intersect 
another boundary of the region, and by some algebraic manipulation, we see 
that the line from (n - l,j) meets (n - 2j - 1, j) (if 2j < n), or (2j - n - l,j) 
(if 2j ~ n). Moreover, the two additional points, (n - 1,0) and (n - 1, n - 1) 
also belong to these two line segments, respectively. Hence we have shown that 



www.manaraa.com

146 

2j < n :=} (n - 2j -1,j,Acc) -+* (n -1,j,Acc) 

2j;:::n:=} (2j-n+l,j,Acc)-+*(n-l,j,Acc) 

(15) 

(16) 

(17) 

Since the points (n - 2j -1,j) and (2j - n + l,j) are precisely the regions 
defined by the guards of Eqns 11 and 12, we may easily conclude that 

2j < n :=} (n - 2j - 2,j + 1, DL) -+* (n - l,j, Ace) 

2j;::: n :=} (2j - n,j -1, DR) -+* (n -1,j,Acc) 

(18) 

(19) 

(20) 

Proceeding in this manner, and reasoning about the domains of Eqns 7 
and 10 (using lines of slope (-1, -1) and (-1,1) respectively) we can show 
that 

2j<n:=} (l,n-j-2,DL)-+*(n-l,j,Acc) 

2j;::: n :=} (l,n -j,DR) -+* (n -1,j,Acc) 

(21) 

(22) 

(23) 

Once again, the regions defined by the guards of these equations make the 
guards of Eqn 8 and 5 true, and we therefore have 

2j < n :=} 

2j ;::: n :=} 

(O,n - j -1,Acc) -+* (n -1,j,Acc) 

(1, n - j - 1, Acc) -+* (n - l,j, Acc) 

(24) 

(25) 

(26) 

Since the union of the implicants of both these equations is a tautology, and 
the implied formulas are identical, this reduces to 

(0, n - j - 1, Acc) -+* (n - l,j, Acc) (27) 

which is precisely what is required. 
Although the proof presented above was not very formal, we make some 

remarks regarding the proof. Note that Eqns 5 - 14 have a very distinctive 
form. They can, in fact, be shown to be equivalent to UREs. Hence, we 
can make use of the convexity properties of the domain (remember that all 
the guard expressions are conjunctions of linear (in)equalities) and reduce the 
verification problem to reasoning about families of lines in such polyhedra. We 
anticipate that this will permit us to automate much of this process. 

It is also apparent that the architecture presented above is not practical. For 
example, it requires each cell to receive broadcast signals indicating start and 
stop instants, and should also know (or be informed through another broadcast 
signal) which half they are on. Since we desire that this should be done without 



www.manaraa.com

147 

hgfedcb: ~C!.!f:gg ... ~~&l: 
hgfedcb a 

• 
hgfedc a b • 

hgfed a c b 
• 

hgfe a d b c • 

Figure 7: RLl: A linear array for on-the-fly reflection 

any global signals, and all I/O must occur at the boundaries, we can only do 
this "row by row." Hence, the time required to complete the operation will be 
2n. In the following section we will present an implementation that fits this 
characterization. 

6 Practical Architectures for Reflection 

We shall now develop practical architectures for reflecting a matrix (both 
in-place and on-the-fly versions). Rather than describing the development in 
a completely formal manner, we rely on a somewhat informal presentation. 
The interested reader can easily check that the verification technique used in 
Sec 5 can be used to verify the correctness of our designs. We first note that 
reflection of a matrix can be decomposed into independent reflections of its 
individual rows (because the row index of any matrix element is unchanged by 
the permutation). As a result, we shall design the reflection arrays as n rows of 
linear arrays (Figs 7 and 8), each one (of length n) responsible for reflecting a 
single row. RLl, the array for on-the-fly reflection of a row, will be used later, 
as a building block in the design of the arrays for rotation. 

The array developed in Sec 5 has the following structure: Each PE has 
output registers to the left and right. The value from the first PE must move 
n - 1 steps to the last PE. In general, the value in the i-th PE (for i ::; n/2) 
must move n - 2i + 1 steps, to PE n - i + 1. For i > n/2, the PEs must send 
their data to the left in a corresponding manner. We ensure that there is no 
conflict during data transmission as follows. Initially all PEs are in idle mode, 
where they merely transmit the left input to the right and vice-versa. The first 



www.manaraa.com

148 

••• 

Rout 

~18 ?r\'t 
Rdne out 

- Rdne In 

Figure 8: Array RL2: Linear array for in-place reflection 

PE, when it receives a load control signal, say, at t = 1 puts its accumulator on 
its right output. The second PE cannot do the same until it has successfully 
transmitted the value sent by the first one, i.e., until t = 3. In general, the i-th 
PE receives the first data value at t = i, and must transmit for i - 2 more time 
units until can send its own data. The load signal must therefore reach the i-th 
PE at t = 2i - 1, i.e., it moves by one processor every two time units. 

As mentioned before the scheme has the flaw that it is not implementable 
using purely local control: the i-th data value reaches its destination (PE 
n - i + 1) at time t = starting time + distance to destination i.e., (2i - 1) + 
(n-2i+l) = n. However, this requires that all the PEs must load their registers 
from the input data at t = n, which implies a broadcast signal.· The solution 
is to slow down the load signal, so that it reaches the i-th PE at t = 3i - 2 (as 
indicated by the three stage output buffer in Fig 8). Thus the i-th data value 
reaches its destination at t = n + i-I, and the termination can be achieved by 
sending an unload signal to the rightmost PE at t = n, which travels left at the 
rate of one PE per time unit. The problem of whether a PE is in the right half 
or the left half does not need to be hardwired, since the load signal that is the 
first to arrive determines this. The entire reflection is completed in 1.5n time 
steps. It has been shown elsewhere that this time bound is also optimal, given 
the constraint of no broadcasts. As mentioned above, the array for reflecting 
the entire matrix merely consists of n rows of such linear arrays. 

"By our nlies, such a broadcast signal is not pennitted in a linear array. However, if this 
array is extended to a 2-dimensional one, it is permitted if sent to only a boundary row. We 
could, therefore, use n copies of the linear array with broadcast as a row in the reflection 
array, by propagating the stop signal downward •. This would mean that the first PE in the 
i-th row starts at t = i, yielding an array that takes 2n time steps. Our proposed solution is 
better than this. 



www.manaraa.com

149 

6.1 On the fly reflection 

In the array RLl, each processor has an accumulator, a data input from the 
left, and an output to the right, and a control signal that it receives from the 
left. If the control signal is one (indicated by solid dots in the figure), the 
processor latches the input value into the accumulator and from the next cycle 
onwards, it simply transmits the input values to the right. It should be clear 
that this array reverses the incoming stream of data values in 2n time units, 
as it is being loaded into the array. Note that in Fig 7, the control signal (i.e., 
the solid dot) is always aligned to the first data value in the stream. This time 
bound is optimal, since the last value to enter the array (at t = n) is al,l, and 
its destination is PE n. 

In order to describe and verify the correctness of this architecture, we need 
to develop space-time mappings. Static maps to memory addresses cannot 
describe dynamic behaviour like data flowing over an input line. For instance, 
the input of the operation is described by the following space-time mapping: 

(i,j) t-+ (j -1,(i,n,DT») 

where the address space is {O, ... , n-l} x {O, ... , n} x {Acc, DT}. (The column 
y = n is added just to simplify the input description. For the same reason, we 
allow the time -1 for the first input.) The output is described by the mapping 

(i,j) t-+ (2(n - 1), (i,j, Acc»). 

Given a formal transfer relation, describing the data transfers of the array as 
informally described above, the correctness of the on the fly-reflection can be 
proved similarly as for the in-place reflection. The details are left as an exercise 
for the reader. 

7 90-degree Rotation of a Stored Matrix 

This operation rotates the storage order of a matrix that is already present in 
the array, as shown in Fig. 9. The array that we design implements the space 
time tarnsfer relation shown in Fig. 11 

Since arithmetic in Eqn 2 is mod-n, C(i,j) = (j,n + 1 - i). We observe 
that here too, the matrix can be partitioned so that the action of C can be 
decomposed into independent permutations of these partitions. In particular, 
let i :S n/2 and m = n - i + 1, and consider the elements in the set Ai = Al U 
A 2UA3UA4, where Al = {ai,k I k = i ... m-l}, A2 :;;: {ak,m I k = i ... m-l}, 
A3 = {am,k I k = m-l ... i+l}, and A4 = {ak,i I k = m ... i+ I}. Then 
C(Ai) = Ai, i.e., Ai is closed under the rotation, C. The set Ai consists of 
a "square ring," on which the action of C is merely a circular right shift by 
m - i-I, i.e., by n - 2i + 1. In our array, therefore, if we design the PEs to 
align themselves into n/2 circular shift-registers, there will be no data conflicts. 
Moreover, the i-th such shift-register will need to perform n- 2i+ 1 shifts. This 
can be achieved as follows. Let us first consider PEs that are in the interior of 



www.manaraa.com

150 

the triangle [1,1], [1, nJ and [n/2, n/2] (we call such PEs north quadrant PEs). 
We see that if a PE in the i-th row starts at t = i and stops at t = n - i + 1, it 
will perform the desired number of shifts. This can be signalled by a start signal 
that propagates downward (at unit speed), and a stop signal moving upwards 
from the bottom of the array. However, for the PEs in the south quadrant, 
the same signals can be used simply by interchanging their roles - the signal 
going up is treated as the start signal and the one going down is the stop signal. 
The PEs in the east and west quadrant are similar, except that they perform 
vertical shifts. As with the reflection array, we do not need to hardwire any of 
the PEs, the first control signal to reach a PE indicates which quadrant it is 
in. For example, if a PE first receives a 1 on its bottom imput, it knows that 
it is in the south quadrant and must therefore shift left until it gets a signal 
from the top. Moreover, the corner PEs are also uniquely informed of their 
duties because they are the ones that get two control signals simultaneously. 
The complete array is shown in Fig 10 (for the sake of clarity, we do not show 
the data connections that are not used). The entire operation takes n time 
steps, which is optimal. 

) )-

00 01 ... On-I n-l0 ... lOOC 
10 11 ... In-l n-11 ... 110 

~ 

n-l0 ... n-ln-l n-ln -1 ... On-I 

" 
) 

" .. " 
j 

@] 
, , 

" , 

Figure 9: Rotation of a matrix in place 



www.manaraa.com

151 

Figure 10: Cl: Array for in-place clockwise rotation 

8 90 degree rotation of an incoming matrix 

This operation rotates the storage order of a matrix on the fly, while it is loaded 
into the mesh array. The array is loaded from the "right", column by column, 
with the lowest-numbered column first. When the matrix eventually is loaded 
it has become stored in a rotated fashion, so that column j becomes row j and 
row i becomes row n - 1 - i. See figure 12. 

Let us now see how we can develop an array for performing a rotation of a 
matrix as it is being loaded into the array. We know that the i-th row of the 
matrix (elements in the order ai,n,ai,n_l, ... ,ai,2,ai,l) enters the array from 
the left, and their destination is the (n - i + 1)-th column. We can send the 
values to the correct destination if the entire row is first transmitted to the 
right, and when, at t = n - i + 1, it reaches PE [i, n - i + 1] (the pivot PE), 
it is sent on down for another n - i + 1 time units. At this time, all the PEs 
below (inclusive) the "south-west-north-east" diagonal latch their input values 
into their accumulators, the pivot PEs start routing the data upwards, and the 
PEs above the diagonal act like a verticalliear array for reflection for another 
2( i-I) steps. At this time the operation is complete. 

We must now ensure that the above sequence of operations can be performed 



www.manaraa.com

152 

with only local control. Initially all the PEs are idle, and they start to transmit 
data to the right when they recieve a control signal from the left (this control 
signal travels to the right at unit speed, and is thus always aligned with ai,n' 

There is also a vertical control signal that travels upwards at unit speed. In 
addition, there is a pair of slow control signals that move (one vertically, and 
the other horizontally) at half speed. All signals are initiallized to one at t = l. 
Now, the pivot PEs are the ones that recieve both the fast control signals 
simultaneously. Bottom PEs are the ones that get the vertical (fast) signal 
first. These PEs ignore the vertical slow signal (merely transmit it). They 
start shifting downwards as soon as they get the horizontal fast signal, and 
load their accumulators from the vertical input when the horizontal slow signal 
arrives. The pivot PEs atart shifting (Left-input to Down-output) when they 
get the fast signal, load their accumulators when they get the slow signal, and 
from then on start transmitting upwards (Left-Input to Up-output). The top 

} CD 

(i) 'h:,t l JjV' 
shift x+ 

/ "-
® 

• / 

~~ 

~~ 

"' ~ 

l! CD y 

G) G) 

shift y-

.. 
y y 

igure 11: Space time view of the transfer relation for reflection: three diferent 
lices of the array are shown 



www.manaraa.com

IS3 

half PEs remain idle until they get the vertical slow signal, and they use it 
as the control signal to perform a vertical reversal of the upward-moving data 
stream. 

The reader may use a formal argument like the ones presented earlier to 
prove the correctness of the array. The array takes 2n time steps to complete 
the operation, and once again, a critical path argument shows that this is 
optimal. 

9 Conclusions 

We have described how to perform affine permutations of matrices on mesh­
connected processor arrays with local control only. The data permutations 
can be used to interface matrix computations on systolic and wavefront array 
architectures. 

First, we described how to implement general affine permutations by an 
efficient on the fly-generation of tags, while loading the matrix to be permuted, 
followed by a sorting phase. The generality here was bought at the expense of 

)-

4-- 00 01 On-I - 1011 In-l -..--4--..--4-- n-IO n-In-I 
x 

~ )- :> .. 
n-l0 WOO shift up 

, 
n-11 11 01 / 

split / 
stream / 

/ shift left 
/ reverse 

/ down 
n-In -1 On-I '/ 

x , x 

Figure 12: On the fly-rotation of an incoming matrix. 



www.manaraa.com

154 

providing hardware for generating the tags and implementing a systolic sort­
ing algorithm on the mesh. The sorting phase also adds to the time for the 
operation. 

In order to alleviate these problems, we devised four specialized architec­
tures: two for in-place reflection and 90 degree rotation, and two for the same 
operations performed on the fly while loading the matrix into the mesh. With 
these operations, any affine permutation in the subgroup of 90 degree rotations 
and reflections can be carried out. This subgroup includes matrix transpose. 
The architectures for in-place rotation and the on the fly-permutations are 
time-optimal even without the restriction on local control. There are faster 
architectures for in-place reflection with broadcast signals. These schemes re­
quire, however, that all cells at some time change their behaviour simultane­
ously. If a cell is to change its behaviour only at the arrival of a control signal, 
then the proposed architecture is time-optima:l. 

In the proposed architectures, cells behave differently depending on their 
position. They set their state according to their position by monitoring which 
control signal arrives first. Actually, control signals input over the boundaries 
and propagated with different speed provide a general way to divide the mesh 
into regions, where different signals arrive first in different regions. By choosing 
input boundaries and varying the input times and the speed of the signals, any 
partitioning of the cells into regions with linear bounds can be effectuated. In 
this way the states of the cells can be set "remotely", from the boundaries of 
the mesh, according to their position. 

The four proposed permutation architectures could be seen as active mem­
ory operations. it is indeed possible to build such a memory, with local control 
only, as a mesh-connected array of a single, simple type of cells. Such a memory 
could serve as a frame buffer for systolic arrays. Suitable rotations and reflec­
tions could then be performed on the buffer before the systolic computation 
is initialized. Alternatively, the operations could be carried out in the systolic 
array itself, if it is mesh-connected. 

A theoretical framework for describing and reasoning about prescheduled 
data transfers was developed. An immediate application of the framework is 
verification of the proposed specialized architectures, but the framework is gen­
eral and can describe other topologies and other operations than permutations 
as well. The introduction of address space-time adds the power to describe 
both temporal and spatial distributions of data, which is absolutely crucial 
when reasoning about systolic and wavefront array architectures which operate 
in a heavily pipelined fashion. 

Automated synthesis and verification of implementations of space-time per­
mutations is an intriguing possibility. In the case of mesh-connected arrays with 
local control only, we believe that there are efficient procedures for this. In such 
a system, data travels along straight lines in given registers in address space­
time. To show that two events are connected then amounts to solving a number 
of linear equations. The transfer relations will typically be compactly repre­
sented by linear inequalities, deciding where in space-time certain behaviours 
are to occur. Such inequalities can be reasoned about efficiently. Fast methods 



www.manaraa.com

155 

exist to decide whether or not a system of linear inequalities has a solution 
[Sh081]. Thus, it is for instance possible to decide whether a representation of 
a transfer relation really is well-formed, i.e. represents a causal forest. 

It is also interesting to consider the relationships of the transfer relation 
- space-time permutation model with space-time scheduling methods for syn­
thesis of regular synchronous hardware. The specialized mesh-connected ar­
chitectures considered here can be described by systems of uniform recurrence 
equations [KMW67]. Algorithms described by such equations can be automat­
ically mapped to systolic arrays [Qui84]. They are included in a larger class of 
static algorithms, for which methods to find time-optimal mappings under lin­
ear constraints exist [Lis90]. Thus, it seems viable that these transformational 
methods can be used to optimize mesh-connected permutation architectures 
with localized control as well. 

The theoretical framework is by no means restricted to systems with lo­
cal control: the actions of other types of systems like SIMD machines can be 
also be described. Verification of the correctness of SIMD data distribution 
operations could, for instance, be done by giving a transfer relation as formal 
semantics to each data-moving instruction, combining transfer relations aris­
ing from sequences of such instructions and then verifying that the resulting 
transfer relation connects the desired events. 

References 

[CF85] 

[Che86] 

[CS84] 

[DI87] 

[Fla82] 

[HL87] 

K. Culik II and I. Fris. Topological transformations as a tool in the 
design of systolic networks. Theoretical Computer Science, 37:183-
216, 1985. 

Marina C. Chen. A design methodology for synthesizing parallel 
algorithms and architectures. Journal of Parallel and Distributed 
Computing, 3(6):461-491, December 1986. 

Peter R. Cappello and Kenneth Steiglitz. Unifying VLSI designs 
with linear transformations of space-time. Advances in Computing 
Research, 2:23-65, 1984. 

Jean-Marc Delosme and Ilse Ipsen. Efficient systolic arrays for the 
solution of Toeplitz systems: an illustration of a methodology for 
the construction of systolic architectures in VLSI. In Will Moore, 
Andrew McCabe, and Roddy Urquhart, editors, Systolic Arrays, 
pages 37-46, Bristol, UK, 1987. Adam Hilger. 

Peter M. Flanders. A unified approach to a class of data move­
ments on an array processor. IEEE Transactions on Computers, 
C-31(9):809-819, September 1982. 

Chua-Huang Huang and Christian Lengauer. The derivation of sys­
tolic implementations of programs. Acta Informatica, 24(6):595-
632, November 1987. 



www.manaraa.com

156 

[JRK87] H. V. Jagadish, Sailesh Rao, and Thomas Kailath. Arrayarchitec­
tures for iterative algorithms. Proceedings of the IEEE, 75(9):1304-
1321, September 1987. 

[KL80] H. T. Kung and C. E. Leiserson. Algorithms for VLSI Processor 
Arrays, chapter 8.3, 'Introduction to VLSI Systems,' Mead, C. and 
Conway, L., pages 271-292. Addison-Wesley, Reading, Ma, 1980. 

[KMW67] R. M. Karp, R. E. Miller, and S. Winograd. The organization of 
computations for uniform recurrence equations. JACM, 14(3):563-
590, July 1967. 

[Kun88] S. Y. Kung. VLSI Array Processors. Prentice Hall, 1988. 

[Lis89] Bjorn Lisper. Synthesis of Synchronous Systems by Static Schedul­
ing in Space-time, volume 362 of Lecture Notes in Computer Sci­
ence. Springer-Verlag, Heidelberg, May 1989. 

[Lis90] Bjorn Lisper. Synthesis of time-optimal systolic arrays with cells 
with inner structure. Journal of Parallel and Distributed Comput­
ing, 10(2):182-187, oct 1990. 

[LMT] Tom Leighton, Filia Makedon, and Ioannis Tollis. A 2n - 2 step 
algorithm for routing in an n x n array with constant size queues. 
Manuscript, Laboratory for Computer Science, MIT, Cambridge, 
MA 02139. 

[LR] Bjorn Lisper and Sanjay Rajopadhye. Prescheduled permutations 
of distributed data fields. Manuscript in preparation. 

[MF86] Dan I. Moldovan and Jose A. B. Fortes. Partitioning and map­
ping algorithms in fixed size systolic arrays. IEEE Transactions on 
Computers, C-35:1-12, January 1986. 

[MMJ89] John McCanny, John McWirther, and Earl Schwartzlander Jr., ed­
itors. Systolic Array Processors. Prentice Hall, Hertfordshire, UK, 
19S9. 

[MMUS7] Will Moore, Andrew McCabe, and Roddy Urquhart, editors. Sys­
tolic Arrays. Adam Hilger, Bristol, UK, 1987. 

[MoI82] Dan 1. Moldovan. On the analysis and synthesis ofVLSI algorithms. 
IEEE Transactions on Computers, C-31:1l21-1126, October 1982. 

[MW84] W. L. Miranker and A. Winkler. Space-time representation of com­
putational structures. Computing, 32:93-114, 1984. 

[NS79] D. Nassimi and S. Sahni. Sorting on a mesh-connected parallel 
computer. IEEE Transactions on Computers, C-28(1):2-7, January 
1979. 



www.manaraa.com

157 

[NS80] David Nassimi and Sartaj Sahni. An optimal routing algorithm for 
mesh-connected parallel computers. Journal of the Association for 
Computer Machinery, 27(1):6-29, January 1980. 

[0'L87] Dianne P. O'Leary. Systolic arrays for matrix transpose and other 
reorderings. IEEE 1tansactions on Computers, C-36(1):117-122, 
January 1987. 

[0087] A. Yavuz Oru<; and M. Yaman Oru<;. Programming cellular permu­
tation networks through decomposition of symmetric groups. IEEE 
1tansactions on Computers, C-36(7):802-809, July 1987. 

[Qui84] Patrice Quinton. Automatic synthesis of systolic arrays from uni­
form recurrent equations. In Proceedings of the 11th Annual In­
ternational Symposium on Computer Architecture, pages 208-214, 
June 1984. 

[Qui87] Patrice Quinton. The Systematic Design of Systolic Arrays, chap­
ter 9, Automata Networks in Computer Science, pages 229-260. 
Princeton University Press, 1987. Preliminary versions appear as 
IRISA Tech Reports 193 and 216, 1983. 

[QV89] Patrice Quinton and Vincent Van Dongen. The mapping of linear 
recurrence equations on regular arrays. Journal of VLSI Signal 
Processing, 1(2):95-113, 1989. 

[Raj 89] Sanjay V. Rajopadhye. Synthesizing systolic arrays with control 
signals from recurrence equations. Distributed Computing, pages 
88-105, May 1989. 

[Rao85] Sailesh Rao. Regular Iterative Algorithms and their Implementa­
tions on Processor Arrays. PhD thesis, Stanford University, Infor­
mation Systems Lab., Stanford, Ca, October 1985. 

[RF90] Sanjay V. Rajopadhye and Richard M. Fujimoto. Synthesizing sys­
tolic arrays from recurrence equations. Parallel Computing, 14:163-
189, June 1990. 

[RFS85] I. V. Ramakrishnan, D. S. Fussell, and A. Silberschatz. Mapping 
homogeneous graphs on linear arrays. IEEE 1tansactions on Com­
puters, C-35:189-209, March 1985. 

[RK88] Sailesh K. Rao and Thomas Kailath. Regular iterative algorithms 
and their implementation on processor arrays. Proceedings of the 
IEEE, 76(3):259-269, March 1988. 

[RTRK88] Vawani Roychowdhury, Lothar Thiele, Sailesh K Rao, and Thomas 
Kailath. On the localization of algorithms for VLSI processor ar­
rays. In Robert W. Brodersen and Howard S. Moscovitz, editors, 



www.manaraa.com

IS8 

VLSI Signal Processing, III, pages 459-470, Monterey, Ca, Novem­
ber 1988. IEEE Accoustics, Speech and Signal Processing Society, 
IEEE Press. A detailed version is submitted to IEEE Transactions 
on Computers. 

[Sho81] Robert Shostak. Deciding linear equalities by computing loop 
residues. Journal of the Association for Computer Machinery, 
28(4):769-779, October 1981. 

[Sie85] Howard Jay Siegel. Interconnection Networks for Large-Scale Par­
allel Processing. Lexington Books, Lexington, MA/Toronto, 1985. 

[TK77] Clark D. Thompson and H. T. Kung. Sorting on a mesh-connected 
parallel computer. CACM, 20(4):263-271, April 1977. 

[WAS88] Benjamin W. Wah, Mokhtar Aboelaze, and Weijia Shang. System­
atic design of buffers in macropipelines of systolic arrays. Journal 
of Parallel and Distributed Computing, 5(1):1-25, February 1988. 

[WD89] Yiwan Wong and Jean Marc Delsome. Transformation of broad­
casts into propagations in systolic algorithms. Technical Report 
YALEU/DCS/RR-701, Yale University, Computer Science Depart­
ment, May 1989. 

[YC88] Yoav Yaacoby and Peter R. Cappello. Converting affine recurrence 
equations to quasi-uniform recurrence equations. In A WOC 1988: 
Third International Workshop on Parallel Computation and VLSI 
Theory. Springer Verlag, June 1988. See also, UCSB Technical Re­
port TRCS87-18, February 1988. 



www.manaraa.com

7 
ARCHITECTURES FOR 

STATICALLY SCHEDULED DATAFLOW1 

Edward Ashford Lee 
Jeffrey C. Bier 

U. C. Berkeley 
Berkeley, CA 94720 

ABSTRACT 

When dataflow program graphs can be statically scheduled, little run-time 
overhead (software or hardware) is necessary. This paper describes a class of 
parallel architectures consisting of Von Neumann processors and one or 
more shared memories, where the order of shared-memory accesses is deter­
mined at compile time and enforced at run time. The architecture is 
extremely lean in hardware, yet for a set of important applications it can per­
form as well as any shared memory architecture. Dataflow graphs can be 
mapped onto it statically. Furthermore, it supports shared data structures 
without the run time overhead of I-structures. A software environment has 
been constructed that automatically maps signal processing applications onto 
a simulation of such an architecture, where the architecture is implemented 
using Motorola DSP96002 microcomputers. 

Static (compile-time) scheduling is possible for a subclass of dataflow pro­
gram graphs where the firing pattern of actors is data-independent. This 
model is suitable for digital signal processing and some other scientific com­
putation. It supports recurrences, manifest iteration, and conditional assign­
ment. However, it does not support true recursion, data-dependent iteration, 
or conditional evaluation. An effort is under way to weaken the constraints 
of the model and to determine the implications on hardware design. 

1 Reprinted with permission from Journal on Parallel and Distributed Systems, De­
cember 1990. The authors gratefully acknowledge support from Darpa, the Semiconductor 
Research Corporation, Motorola, Inc., and Dolby Laboratories. 



www.manaraa.com

160 

1. INTRODUCTION 
A promising alternative to general-purpose parallel computing para­

digms is to collect a heterogeneous set of special-purpose solutions. 
Hardware costs have dropped sufficiently that specialized hardware modules 
can form part of a cost-effective high-performance system. This paper 
describes a parallel architecture that supports a class of algorithms with rea­
sonably deterministic behavior. The architecture is simple to implement, yet 
very fast for the class of applications supported. Furthermore, since the class 
of applications is restricted, fully automated software mapping is feasible. 

Among the applications of this architecture are digital signal processing 
(DSP) and some scientific computing. These applications differ from general 
purpose computation both in the nature of the algorithms and in the target 
hardware. The algorithms tend to have less decision making and use mostly 
simple data structures (arrays and streams). In DSP applications, the target 
hardware is often dedicated to an application or a small class of applications, 
rather than being general purpose, and often has to have low cost together 
with very high computation rates (to meet hard real-time constraints). These 
differences create both a hindrance and an opportunity. The hindrance is that 
mainstream computer science techniques do not apply very well. This 
accounts for the fact that the DSP community designs its own microproces­
sors, computer languages, multiprocessor architectures, and software. The 
opportunity is that the structural simplicity of the algorithms and data struc­
tures makes some traditionally very difficult problems much easier. 

Dataflow techniques have been applied to DSP in the guise of "block­
diagram languages" since its very earliest days. Whereas most of the com­
puter user community resists the introduction of new programming para­
digms, the DSP community has embraced experimentation of this type. 
Dataflow representation of algorithms, in fact, is very natural in DSP, appeal­
ing even without the motivation of concurrency. Of course, the ability to 
automatically exploit concurrency can only increase the appeal. However, 
most attempts to do so through the use of dataflow architectures have not 
succeeded commercially. I propose in this paper that the principal reason for 
this is that the dataflow techniques of general-purpose computing are too 
expensive for DSP and more powerful than what is required. The focus of 
this discussion is on scheduling, the heart of concurrency in dataflow. 

In the process of developing a general scheduling strategy suitable for 
DSP, we have to be realistic in our assertions about the algorithms; 
specifically, almost any generalization has counterexamples. Although we 
can rely on relatively little decision making in the algorithms, we cannot rely 
on ,no decision making without sacrificing a great number of applications. 
Consequently, the proposed scheduling strategies' tolerate decision making, 
but the performance may degrade as the amount of decision making 
increases. This tolerance, however, means that elements of the strategy may 
be applicable in general-purpose computing. 



www.manaraa.com

161 

1.1. A Scheduling Taxonomy 
In this paper, we only consider non-preemptive scheduling, and the 

emphasis will be on practical solutions rather than unrealistic abstract 
models. For the purposes of this paper, we define "scheduling" to include 
three tasks: (1) assigning actors to processors, (2) ordering the actors on each 
processor, and (3) specifying their firing time. Every dataflow implementa­
tion must perform all three tasks, but implementations can differ by perform­
ing them at compile time or at run-time, or by using complex or simple 
scheduling strategies. Depending on which tasks are done when, we define 
four classes of scheduling. The first is fully-dynamic, where actors are 
scheduled at run-time only. When all input operands for a given actor are 
available, the actor is assigned to an idle processor. The second type is static 
allocation, where an actor is assigned to a processor at compile time and a 
local run-time scheduler invokes actors assigned to the processor. In the 
third type of scheduling, the compiler determines the order in which actors 
fire on each processor. At run-time, each processor waits for data to be avail­
able for the next actor in its ordered list, and then fires that actor. We call 
this self-timed scheduling because of its similarity to self-timed circuits. The 
fourth type of scheduling is fully-static; here the compiler determines the 
exact firing time of actors, as well as their assignment and ordering. This is 
analogous to synchronous circuits. As with most taxonomies, the boundaries 
between these categories are not rigid. 

1.2. Examples 
We can give familiar examples of each of the four strategies applied in 

practice. Fully-dynamic scheduling has been applied in the MIT static 
dataflow architecture [Den80], the LAU, system, from the Department of 
Computer Science, ONERNCERT, France [Pla76], and the DDMI [Dav78]. 
It has also been applied in a digital signal processing context for coding vec­
tor processors, where the parallelism is of a fundamentally different nature 
than that in dataflow machines [Kun87]. A machine that has a mixture of 
fully-dynamic and static-assignment scheduling is the Manchester dataflow 
machine [Wat82]. Here, groups of 15 processing elements are collected in 
rings. Actors are assigned to a ring at compile time, but to a PE within the 
ring at run time. Thus, assignment is dynamic within rings, but static across 
rings. 

Examples of static-assignment scheduling include many dataflow 
machines. A commonly adopted practical compromise in these machines is 
to allocate the actors to processors at compile time. Many implementations 
are based on the tagged-token concept [Arv82]; for example TI's data-driven 
pro'cessor (DDP) executes Fortran programs that are translated into dataflow 
graphs by a compiler [Cor79] using static-assignment. Another example 
(targeted at digital signal processing) is the NEC uPD728l [Cha84]. The 
cost of implementing tagged-token architectures has recently been reduced 
significantly using an "explicit token store" [Pap88]. Another example of an 
architecture that assumes static-assignment is the proposed "argument-



www.manaraa.com

162 

fetching dataflow architecture" [GaoSS], which is based on the argument­
fetching data-driven principle of Dennis and Gao [DenSS]. 

When there is no hardware support for scheduling (except perhaps syn­
chronization primitives), then self-timed scheduling is usually used. Hence, 
most applications of today's general-purpose multiprocessor systems use 
some form of self-timed scheduling, using for example CSP principles 
[Hoa7S] for synchronization. In these cases, it is often up to the program­
mer, with meager help from a compiler, to perform the scheduling. A more 
automated class of self-timed schedulers targets wavefront arrays [KunSS]. 
Taking a broad view, asynchronous digital circuits can also be said to use 
self-timed scheduling. 

Systolic arrays, SIMD (single instruction, multiple data), and VLIW 
(very large instruction word) computations [FisS4] are fully-statically 
scheduled. Again taking a broad view of the meaning of parallel computa­
tion, synchronous digital circuits can also be said to be fully-statically 
scheduled. 

1.3. Generality 
As we move from scheduling strategy number one to strategy number 

four, the compiler requires increasing information about the actors in order to 
construct good schedules. However, assuming that the information is avail­
able, the ability to construct deterministically optimal schedules increases. 
To construct an optimal fully-static schedule, the execution time of each 
actor has to be known; This requires that a program have only deterministic 
and data-independent behavior. Constructs such as conditionals, data­
dependent iteration, and some recursion make this impossible, and realistic 
I/O behavior makes it impractical. 

Self-timed scheduling in its pure form is effective for only the subclass 
of applications where there is no data-dependent firing of actors, and the exe­
cution times of actors do not vary greatly. However, unlike fully-static 
scheduling, some variation in execution times is tolerable. Signal processing 
algorithms and scientific computation often fit this model. The run-time 
overhead is very low, consisting only of simple handshaking mechanisms, 
and requiring no sophisticated hardware capability such as indivisible 
"fetch-and-add" or "fetch-and-set" primitives. Furthermore, provably 
optimal (or close to optimal) schedules can be found. As with fully-static 
scheduling, conditionals, data-dependent iteration, and recursion are 
excluded if the resulting schedule must be optimal. 

Static-assignment scheduling is a compromise that admits more data 
dependencies than either fully-static or self-timed, but all hope of optimality 
must be abandoned in most cases. Although static-assignment scheduling is 
commonly used, compiler strategies for accomplishing the assignment are 
not satisfactory. Numerous authors have proposed techniques that comprom­
ise between interprocessor communication cost and load balance [MuhS7] 
[ChuSO] [ZisS7] [MaS2] [EfeS2] [Lu86]. But none of these consider 



www.manaraa.com

163 

precedence relations between actors. To compensate for ignoring the pre­
cedence relations, some researchers propose a dynamic load balancing 
scheme at run-time [KeIS4][BurSl][IqbS6]. Unfortunately, the cost of such a 
scheme can be nearly as high as fully-dynamic scheduling. Others have 
attempted with limited success to incorporate precedence information in 
heuristic scheduling strategies. For instance, Chu and Lan use very simple 
stochastic computation models to derive some principles that can guide 
heuristic assignment for more general computations [ChuS7]. However, only 
very simple stochastic models yield to analysis, so we should not expect too 
much from the resulting principles. 

Fully-dynamic scheduling is most able to utilize resources and to fully 
exploit the concurrency of a dataflow representation of an algorithm, regard­
less of the amount of data dependency. However, it requires too much 
hardware and/or software run-time overhead. For instance, the MIT static 
dataflow machine [DenSO] proposes an expensive broadband packet switch 
for instruction delivery and scheduling. Furthermore, it is usually not practi­
cal to make globally optimal scheduling decisions at run-time, so practical 
implementations fall short of the theoretical ability to exploit parallelism. 
One attempt to overcome this by using compile-time information to assign 
priorities to actors to assist a dynamic scheduler was rejected by Granski et. 
al., who conclude that there is usually not enough performance improvement 
to justify the cost of the technique [GraS7]. However, in the special case of 
algorithms with "regular, static structure" (such as a OFT), there are 
significant performance improvements. But it is precisely such algorithms 
that require only static scheduling, and can therefore be efficiently imple­
mented on much less expensive machines that include no runtime mechan­
ism for scheduling actors. A cost effective solution for a general-purpose 
computer might be an architecture that can revert to imperative control flow 
(or something resembling it) when executing algorithms that are statically 
scheduled. Perhaps some of the recently proposed hybrid von 
Neumann/dataflow architectures could take advantage of this observation 
(see for example [NikS9][IanSS]). 

In view of the high cost of fully-dynamic scheduling, static-assignment 
and self-timed are attractive alternatives. This is true even though both will 
suffer in performance, compared to fully-dynamic scheduling, as the amount 
of data dependency increases. Self-timed is more attractive for scientific 
computation and digital signal processing, because it is more static, while 
static-assignment may be more attractive when there is more data depen­
dency. The performance of both techniques depends heavily on good 
compile-time decisions, so it is appropriate to concentrate on finding good 
compiler algorithms. 



www.manaraa.com

164 

1.4. Strategy 
For any scheduling strategy that requires compile-time decisions, for 

example assignment or ordering, these decisions can be made by construct­
ing a fully-static schedule and discarding the infonnation that is not required. 
At run time, the execution is forced to exactly match the "retained" informa­
tion. For example, in static-assignment, only the assignment infonnation is 
retained. In self-timed, the assignment and ordering infonnation is retained. 
In fully-static scheduling, all infonnation is retained. 

We will explore a model lying between fully-static and self-timed, and 
develop an approach to architecture design well matched to this model. In 
this new model, we retain not only the ordering of actors on each processor, 
but also the ordering of accesses to shared resources, such as shared memory 
or shared data structures. Architectures supporting this model are only 
slightly more complex than architectures supporting fully-static scheduling, 
but the model is much more robust. Specifically, some of the flexibility of 
self-timed scheduling persists, because timing infonnation in the fully-static 
schedule is discarded. Hence the execution time of actors can vary at run 
time without affecting the correctness of the execution. On the other hand, 
the run-time execution is more constrained than for self-timed, because the 
order in which processors access shared resources is forced at run time to 
exactly match that of the fully-static schedule. 

2. SHARED MEMORY ARCHITECTURES 
For fully-static implementations the target architecture need not have 

any special hardware for run-time scheduling. For self-timed scheduling, the 
only additional requirement is efficient handshaking. In both cases, Von Neu­
mann processing elements are adequate; there is no need to resort to dataflow 
machines. This section explores these advantages by discussing the run-time 
cost of three architectures, two designed for self-timed scheduling, and one 
designed for a new model lying between self-timed and fully-static schedul­
ing. The first two require semaphore-based synchronization, implemented in 
software and hardware. The third does not require semaphores. 

We assume a host carries out the compilation, mapping an application 
program onto parallel processors that run under control of the host The 
parallel processors are designed for signal processing and scientific comput­
ing, so we will not be so ambitious as to try to map the compiler and operat­
ing system onto the same set of parallel processors by the same techniques. 
However, with the dropping cost of hardware, a heterogeneous multiproces­
sor system of this type is attractive. Different parts of the system are special­
ize~ to different functions, and hence can do a much better job than a com­
pletely "general-purpose" solution. 



www.manaraa.com

165 

2.1. Software Semaphores 
At Berkeley, we have implemented a limited dataflow programming 

environment (Gabriel) for digital signal processing that targets multiproces­
sor machines made with programmable DSP microprocessors [Lee89b]. In 
this case, the compiler and scheduler produce assembly code for each Von 
Neumann processor in the system. Self-timed scheduling can be used, so 
there are no dataflow principles invoked at run-time, except that semaphore­
based synchronization is used when tokens pass between processors. 

Gabriel uses macro dataflow actors, where each actor is defined in a 
more conventional language (Lisp, C or assembly code). The granularity of 
actors is arbitrary, and tends to be highly variable. We have collected 
libraries of higher-level actors for popular signal processing algorithms, such 
as FFfs and digital filters. A typical application consists of tens or hundreds 
of actors (not thousands) so heuristic scheduling strategies with complexity 
of order N 2 are usable. 

One of the target architectures in our lab, donated by Dolby Labora­
tories of San Francisco, has four Motorola DSP56000 processors, each with a 
private memory, plus a single shared memory. Accessing the shared 
memory requires first requesting the bus, then reading the memory, checking 
a semaphore, and resetting the semaphore. An ideal transaction is illustrated 
in figure I (ideal means that the bus is free when requested, and the sema­
phores are in their proper state when checked). It is not necessary to have 
indivisible test-and-set primitives because the static buffering strategy used 

KEY: 
SETUp· LOAD REGISTERS 
BUS· ACQUIRE THE BUS 
CHECK· CHECK SEMAPHORE 
WRITE· WRITE TO SHARED MEMORY 
REL· RELEASE THE BUS 

ISETUP BUS CHECK WRITE REL I 
TRANSMITTING PROCESSOR 

READ· READ FROM SHARED MEMORY 
CLEAR· CLEAR THE SEMAPHORE 

o 

I SETUP BUS CHECK READ CLEAR REL 

RECEIVING PROCESSOR 

I I I I I I I I I I I I I I I 

INSTRUCTION CYCLES 

Figure 1. An ideal transaction through shared memory in a typical 
shared memory multiprocessor when scheduling is seH-timed. The 
number of instruction cycles shown are measured on a prototype mul­
tiprocessor system in our Lab. 

I I) 

30 



www.manaraa.com

166 

in Gabriel ensures that no more than one processor will write data to any 
given memory location, and no more than one processor will read data from 
that location [Lee87b]. The bus contention/resolution and semaphore han­
dling are the only scheduling overhead incurred at runtime. Nonetheless, in 
the Dolby architecture these require about 30 instruction cycles for a single 
transaction, as shown in figure 1. This relatively high cost implies that only 
large-grain dataflow can be supported efficiently. Furthermore, each token 
should ideally contain more than a single data value, because the overhead is 
incurred only once for each token. These restrictions arise from the architec­
ture not being designed with static scheduling in mind. It is much more gen­
eral than we need. 

In programs generated by Gabriel for the Dolby architecture, if the bus 
is not available when requested, the requesting processor halts until the bus 
becomes available. Hence contention for the bus can extend the duration of a 
transaction well beyond the 30 cycles shown in figure 1. In our software 
implementation of semaphore handling, if the semaphore read from shared 
memory is not in the desired state, then the processor releases the bus, and 
attempts the transaction again some time later. The processor busy-waits in 
the meantime. It is up to the scheduler to ensure that processors do not spend 
much time busy-waiting. Of course, these repeated reads further increase the 
load on the shared bus. We conclude that some modification of the architec­
ture is required to be able to effectively map self-timed dataflow graphs onto 
it 

2.2. Hardware Semaphores 
One way to reduce the total transaction time illustrated in figure 

1 would be to add hardware that performs the functions we previously per­
formed in software, such as semaphore management. An architecture doing 
this might look like that in figure 2. Shared memory accesses begin by sup­
plying an address in the shared memory space to the gate keeper. The gate 
keeper asserts a wait signal until the memory request can be satisfied, caus­
ing the processor to halt Meanwhile, the gate keeper acquires the bus, 
accesses the shared memory, and checks the semaphore. Just as in the 
software implementation, if the semaphore is not in the desired state, then the 
read is repeated some time later, with the processor held in its suspended 
state in the meantime. As before, it is up to the scheduler to ensure that not 
much time is wasted this way. Since the schedule is self-timed, there is no 
danger of introducing deadlock by this mechanism. 

On writes to shared memory, the gate-keeper need not halt the proces­
sor requesting the write. The processor can proceed with its execution until 
the next shared-memory transaction is encountered. In the meantime, the 
gate keeper performs the shared-memory write in parallel. 

The main advantage of this architecture is that the functions we previ­
ously performed in software are performed in hardware, and therefore 
presumably occur much faster. Furthermore, the processing elements can 
access shared-memory locations the same way they access local memory. 



www.manaraa.com

000 

OTHER 
PROCESSORS 

Figure 2. A gated-shared-memory architecture. 

167 

The contention resolution and synchronization functions are transparent. 
However, the gate keeper is not trivial, so the time required for shared­
memory accesses is still likely to be larger than the time for local memory 
accesses, even when there is no contention and the semaphores are in the 
desired state. In addition, a preliminary design indicates that to implement it 
on a single chip requires a large (albeit manageable) number of pins. TIlis 
preliminary design assumed the processing elements would be Motorola 
DSP96002's, which have separate 32-bit address and data busses (two of 
each). The relatively high system cost means that it is worth considering an 
alternative that brings us closer to fully-static scheduling. 

2.3. Ordered Memory Architectures 
Consider an architecture,. shown in figure 3, where a shared bus is not 

requested by the processors, but rather a central controller (labeled MOMA) 
grants the bus to processors in some prespecified order (scalability will be 
addressed shortly). Once the bus has been granted to a processor, it is not 
released until the processor has completed a shared-memory transaction. 
The key idea is that a fully-static scheduler can determine a-priori the order 
in which shared-memory transactions will occur. Hence, at the same time 
that a program is loaded into the private memories of each of the processors, 
a list is loaded into the controller specifying the order of memory transac­
tions. TIlis list is simply a list of processor numbers, and the controller sim­
ply asserts the bus-grant line for each processor in turn. The key advantage 



www.manaraa.com

168 

BUS GRANT 

W1RED-OR 
BUS 
BUSY 

000 

Figure 3. Shared memory accesses can be made extremely efficient 
when scheduling is static. Here, a controller (MOMA: Maintains Ordered 
Memory Accesses), grants access to the shared memory in the order 
predicted by the scheduler. No software or hardware overhead is re­
quired for contention/resolution or semaphore handling. 

is that no explicit hardware or software is required/or contentiOn/resolution 
or semaphore management. Contention is avoided by granting the bus to 
only one processor at a time. If any processor reaches a code segment where 
it tries to access shared memory but has not been granted the bus, it simply 
halts until the bus is granted. Static scheduling ensures that this will not 
cause deadlock. Static scheduling also ensures that processors do not spend 
much time halted if there is useful work they could be doing. Furthermore, 
semaphore synchronization is no longer required. To see this, suppose pro­
cessor 1 wishes to read a location written by processor 2. Static ordering of 
memory accesses ensures that the read and write occur in the proper order. 

Consider the ideal scenario, where an optimal (minimum makespan) 
static schedule has been constructed for a completely deterministic program. 
If any processor halts because it has not been granted the bus, no productivity 
is lost because no useful work. could be done anyway, by the assumption that 
the schedule is optimal. Stalling the processor is necessary due to pre­
cedence constraints. Latency of shared-memory accesses are minimized. In 
this idealized scenario the function of the central controller is simply to stall 
processors until their shared memory transactions can proceed. In a more 
realistic scenario, the function of the central controller is much more impor­
tant, since it implicitly synchronizes the processors. 

The processors in figure 3 are specified as DSP96002's, the latest gen­
eration of 32-bit floating-point programmable digital signal processors from 



www.manaraa.com

169 

Motorola. This device is well suited to general scientific computation, 
graphics, and signal processing. More importantly, it is well matched to the 
proposed architecture because it has two completely independent tri-statable 
memory busses. It can be wired exactly as shown in figure 3, with no extra 
logic. The result is a very lean multiprocessor system. We have imple­
mented a four processor prototype (in a software simulation, since the 
DSP96002 has not been available) using the Frigg hardware simulation 
environment [Bie89]. These simulations have been used to execute real pro­
grams, generated from large-grain dataflow graphs by Gabriel [Lee89b]. In 
section 3 below, we discuss this software environment in more detail. But 
for now it is sufficient to observe that as expected, when the scheduler has 
accurate information to work with, up to 15 times as many shared-memory 
transactions can be accomplished in a given period of time, compared to the 
Dolby architecture discussed earlier. Further, we have found that the 
hardware required to implement an ordered memory architecture is substan­
tially simpler than that required for the implementation of more conventional 
tightly-coupled multiprocessor architectures. 

There is nothing architecturally sophisticated in figure 3. The sophisti­
cation comes with binding the architecture to a software methodology, dis­
cussed in more detail in section 3 below. 

2.3.1. Scalability 
In general, centralized controllers in mUltiprocessor systems are ill­

advised because they limit scalability. However, we believe that the archi­
tecture in figure 3 can be used to find the true limits of scalability of shared­
memory architectures. The controller will not be the performance 
bottleneck; instead, shared-memory bandwidth will be the bottleneck. 
Unlike many centralized controllers, this one is simple, and can be imple­
mented easily on a single semi-custom chip. A RAM and a very simple 
finite-state machine are sufficient [Bie90]. The bus grant lines require one 
pin per processor, in the simplest implementation, so pin count is not a seri­
ous problem until hundreds of processors are used together (unlikely even in 
an efficient shared-memory system). Even if this proves feasible, the bus 
grant signal could be encoded, and a small number of decoder chips would 
have to be added. The bus release is accomplished with a single wired-or 
release signal, so only one pin on the controller is required for this function. 

By using the bus arbitration protocol of the 96002, the ordered memory 
system can be designed so that the central controller does not limit the avail­
able shared-bus bandwidth. In the context of the ordered memory architec­
ture, the 96002 bus arbitration protocol functions as follows. The MOMA 
controller grants shared bus ownership to a processor by asserting that 
processor's Bus Grant input. When the processor is ready to begin its 
shared-memory access, it checks the wired-or Bus Busy outputs of its peer 
processors to ensure that the shared bus is free. If the bus is free, the proces­
sor asserts its Bus Busy output and begins its access. Detecting that the pro­
cessor has begun its shared-memory transaction, the MOMA controller can 
deassert the processor's Bus Grant input, and assert that of the next 



www.manaraa.com

170 

processor. When the first processor completes its access, and de asserts its 
Bus Busy output, the second processor begins its access immediately. Thus, 
ownership of the shared bus can change hands at the maximum rate pennit­
ted by the processor's bus arbitration protocol. The MOMA controller does 
not introduce any delay. 

The bandwidth of the shared memory and bus, however, is likely to 
become a bottleneck as the number of processors increases, just as with any 
shared-memory architecture. However, the problem is not as severe as with 
many traditional shared memory architectures. In the Dolby architecture, for 
instance, the bus is held for several cycles on each transaction, while a sema­
phore is fetched and tested and data is read or written. With the ordered­
memory architecture, transactions take as little as one cycle, if the scheduler 
has been successful, because there is no need for semaphore management. 

Even with efficient transactions, a shared bus and shared memory will 
become a problem as the number of processors increases. One solution, first 
proposed in [Bie90J, is shown in figure 4. Two processor clusters have their 
own MOMA controllers and are connected by a gateway processor. The 
gateway processor can apply exactly the same ordered-access principle. 
When a program is loaded into the overall machine, a gateway program is 
loaded into the gateway processor. This gateway program is trivial, consist­
ing only of a sequence of external memory read and write transactions with 
the two shared memories. The order of these transactions is enforced by the 
linear control flow of the program, and the pacing of the program is enforced 
by the external bus-grant signals. Again, no semaphores are required. Inter­
nal memory or registers can be used to buffer data, if necessary. This will be 
necessary, for example, if several consecutive transactions are with the same 
shared memory. 

In figure 4, the same processor type is being used for the gateway as for 
other processors, but if its only function is to serve as a gateway, then a 
simpler custom part could be used. Alternatively, if gateway functions are 
not sufficient to keep the processor busy, productive computation can be 
scheduled. The compiler, by assumption, has the infonnation it needs to do 
this. The implementation shown in figure 4 does not allow for external 
private memory on the gateway processor, although a simple modification 
would correct this, at the expense of additional hardware. 

The gateway approach in figure 4 illustrates that multiple order­
preserving controllers can cleanly coexist. Of course, as with any gateway 
architecture, the program should be carefully partitioned to prevent the gate­
way from becoming the bottleneck. This may not always be possible, so of 
course this architecture is not universally suitable. However, the architecture 
is easily extended. Any number of gateways can coexist on a bus, so a 
tremendous number of processor interconnection topologies can be imple­
mented using the ordered-transaction principle. 



www.manaraa.com

171 

MOMA 

CONTROLLER 

I I 
BUS GRANT 

BUS SHARED 

BUSY MEMORY 

I 
l~ 1 1 ~ ~ jJ~ i 

PROCESSOR PROCESSOR PROCESSOR PROCESSOR 

DSP96002 DSP96002 DSP96002 DSP96002 

_It_T ~ ~ T } _l}T ~ ~T 

PRIVATE PRIVATE PRIVATE 

MEMORY MEMORY MEMORY 

PRIVATE PRIVATE PRIVATE 

MEMORY MEMORY MEMORY 

rrU- }~ i -l}~ i - 1-

PROCESSOR PROCESSOR PROCESSOR 

DSP96002 DSP96002 DSP96002 

1t It T II 
~ 

SHARED 

MEMORY 

IIII BUS GRANT 

MOM A 

CONTROLLER BUS RELEASE 

Figure 4. To scale an ordered memory architecture. processor clusters 
can be connected by a gateway. 



www.manaraa.com

172 

2.3.2. Zero Access Time 
An interesting enhancement is immediately evident. The static 

scheduler not only knows when processors will be accessing shared memory, 
but it knows which memory locations will be accessed, and whether each 
location will be read or written. This knowledge can be used to speed 
shared-memory transactions for a relatively slow memory. As it asserts the 
bus-grant line for a processor, the controller can also drive the address lines 
of the shared memory, if the shared memory is not in use. If the next tran­
saction is a read, and the processor is not already waiting, then the response 
time of the memory will appear to the processor to be zero! When the pro­
cessor gets around to performing the read, the desired data will already be on 
its data bus. 

2.3.3. Estimated Execution Times 
One principle limitation with the architecture in figure 3 is the require­

ment that the order of shared memory transactions be known at compile time. 
This is possible when fully-static scheduling is possible, which, among other 
limitations, implies that the execution time of every actor must be known. 
The Gabriel system does not use fully static scheduling because it is not usu­
ally practical to know exactly the execution time of all actors. However, the 
architecture in figure 3 will function correctly even if estimates of the execu­
tion time are used. This is because the ordered bus grants provide synchroni­
zation, of a sort. If poor estimates of runtimes are used, or a processor is 
interrupted, then this architecture may yield poorer performance than an 
architecture that permits dynamic re-ordering of shared-memory accesses, 
like an architecture that relies on semaphores for synchronization 

Note that if one processor accesses the shared memory at run time 
much later than the scheduler estimated at compile time, then many (or all) 
of the other processors might be idled, waiting for bus grants. By contrast, if 
a processor attempts to access the shared memory too early, only that proces­
sor will be idled. This suggests that with more than two processors the 
scheduler should prefer to overestimate rather than underestimate execution 
times. This principle is quantified in [Ha89], where a method is given for 
estimating execution times to minimize expected idle time on all processors. 
For now, however, we simply assume that the run time estimates are reason­
ably accurate. 

One mechanism that might cause the estimates of actor execution times 
to be poor is traditional cache management. In many systems, a cache miss 
can cause a processor to suspend execution of the program for hundreds of 
cycles. This would probably be unacceptable, since there is a good chance 
that many of the other processors will be delayed as a consequence. This 
would not necessarily occur with self-timed scheduling, because shared­
memory accesses could be dynamically re-ordered. The same is true of inter­
rupts, and to a lesser degree, data-dependent instruction execution times. 
Therefore, cache management, interrupt handling, and data-dependent 
execution-speed optimizations would have to be rethought, or more simply, 



www.manaraa.com

173 

forbidden. An interesting possible solution is to replace dynamic cache 
management with static paging. If fully-static scheduling is possible, then in 
principle, all the requisite information is available. In signal processing, 
because of hard-real-time constraints, it is common to use software con­
trolled paging rather than dynamic caches [Lee88] [Lee89a]. 

2.4. Statically Ordered Data Structure Access 
The lack of side-effects in dataflow actors makes it particularly difficult 

to support large, shared data structures [Gau86]. Arvind, et. al., have there­
fore extended the dataflow model by introducing I-structures, a controlled 
form of global data structures [Arv87]. I-structures are write-once data struc­
tures with non-strict semantics, which in practice means that reads may be 
issued before data is available in the data structure. Support for I-structures 
requires an ability to queue read requests until they can be satisfied. This 
mechanism is the most promising available, but it does not come cheaply. 
One extra memory location is required for each read instruction that can be 
simultaneously pending. In addition, the I-structure memory needs a proces­
sor of a sort to tend to pending reads when a write finally occurs. A much 
simpler mechanism may be used when scheduling is static. 

Consider for example an actor that emits an array. This array might be 
carried by a single token. Suppose there are two actors that take this array as 
an argument. A pure dataflow model requires that the array be copied, or at 
least that an implementation behave as if the array had been copied. Using 
an I-structure avoids this copying. However, with ordered memory accesses, 
the copying is not necessary, and neither is the I-structure memory. Since 
the scheduler is aware of all precedences, it will avoid scheduling reads 
before the data becomes available. If this cannot be avoided (a processor has 
nothing to do until the data becomes available), then the read is attempted 
before the bus is granted to the processor, so the processor halts. The bus 
will not be granted to the processor until the data is ready. There is no need 
to queue accesses. 

When data passed through the shared memory goes from one actor to 
one actor, the scheduler can reclaim the token storage after scheduling the 
read by the destination. Write-once shared data structures are only slightly 
more complicated, because there may be more than one destination actor. 
The scheduler can simply use reference counts (RCs) [Hud86][Dri86] to 
determine when the memory can be reclaimed. For the above example, the 
RC associated with the array storage would be initialized to 2, the number of 
destinations, when the array is scheduled to be written. Each time a read is 
scheduled, the RC is decremented. When it reaches zero the memory can be 
reclaimed. This works without any run-time overhead because the order of 
these transactions will be enforced at run-time. 

Many variations of this idea immediately come to mind; for example, 
reference counts could be used for each element of the array, instead of the 
whole array, thereby getting some of the advantages of the non-strictness of 
I-structures. Specifically, the array does not have to be completely filled 



www.manaraa.com

174 

before some of its elements can be read. Also, if the RC of a data structure is 
identically one, then an actor using it may modify it, instead of simply read­
ing it, something not permitted in the write-once I-structures. An intelligent 
code generator can get considerable mileage out of this. 

The reference count technique has been criticized for a number of rea­
sons [Atv87b], most of which break down when the scheduling is static. Pri­
marily, for ordered memory architectures, the overhead of managing RCs is 
incurred only at scheduling time, not at run time. 

3. STATICALLY SCHEDULED CONTROL 
The ordered memory architecture and the static shared data structures 

seem to provide a very clean solution to some vexing problems. However, 
they are only applicable when fully-static or self-timed scheduling is possi­
ble. Although this imposes some serious constraints, the constraints are less 
serious than they may appear at first 

The programming environment called Gabriel [Lee89b], designed for 
signal processing applications, is based on graphical dataflow representations 
of algorithms. Although specialized to signal processing, this environment 
has permitted extensive experimentation with scheduling algorithms, target 
architectures, and with a style of programming that matches the need for 
static scheduling. As mentioned before, we have implemented a software 
simulation of a four processor ordered memory architecture [Bie90] using the 
Frigg hardware simulation environment [Bie89], and have retargeted Gabriel 
to this architecture. Hence, we have been able to gain some experience com­
piling and running real programs on this architecture. 

The granularity of the actors in Gabriel is arbitrary, varying from sim­
ple arithmetic operators up to high level signal processing functions such as 
FFfs. Gabriel translates dataflow graphs into sequential assembly code for 
programmable DSPs, performing the scheduling statically for multiple pro­
cessors. A typical signal processing application contains at most hundreds of 
actors, so we can experiment with rather complex scheduling algorithms 
without getting bogged down. 

To be able to schedule computations statically, Gabriel restricts the 
dataflow model to a subclass called synchronous dataflow (SDF) [Lee87a]. 
We begin this section with a review of the properties of this subclass, and 
then continue by showing that it is not as limited as might first appear. In 
particular, we show that it supports recurrences, manifest iteration, and con­
ditional assignment, but does not support true recursion, data-dependent 
iteration, nor conditional evaluation. 

3.1. Synchronous Dataflow 
A subclass of dataflow graphs lacking data dependency is well suited to 

static scheduling. Precisely, the term "synchronous dataflow" has been 
coined to describe graphs that have the following property [Lee87a]: 



www.manaraa.com

175 

SDF property: 
A synchronous actor produces and consumes a fixed number of tokens 
on each of a fixed number of input and output paths. An SDF graph 
consists only of synchronous actors. 

The basic constraint is that the number of tokens produced or consumed can­
not depend on the data. An immediate consequence is that SDF graphs can­
not have data-dependent firing of actors, as one might find, for example, in 
an if-then-else construct. In exchange for this limitation, we gain some 
powerful analytical and practical properties [Lee87a][Lee87b]: 

1) For SDF graphs, the number of firings of each actor can be easily deter­
mined at compile time. If the program is non-tenninating, as for exam­
ple in real-time DSP, then a periodic schedule is always possible, and 
the number of firings of actors within each cycle can be detennined at 
compile time. In either case, knowing these numbers makes it possible 
to construct a detenninistic acyclic precedence graph. If the execution 
time of each actor is detenninistic and known, then the acyclic pre­
cedence graph can be used to construct optimal or near-optimal 
schedules. 

2) For non-tenninating programs, it is important to verify that memory 
requirements are bounded. This can be done at compile time for SDF 
graphs. 

3) Starvation conditions, in which a program halts due to deadlock, may 
not be intentional. For any SDF graph, it can be analytically deter­
mined whether deadlock conditions exist. 

4) If the execution time of each actor is known, then the maximum execu­
tion speed of an SDF graph can be detennined at compile time. For 
tenninating programs, this means finding the minimum makespan of a 
schedule. For non-tenninating programs, this means finding the 
minimum period of a periodic schedule. 

5) For any non-tenninating SDF graph executing according to a periodic 
schedule, it is possible to buffer data between actors statically. Static 
buffering means loosely that neither FIFO queues nor dynamically allo­
cated memory are required. More specifically, it means that the com­
piler can statically associate memory locations with actor firings. 
These memory locations contain the input data and provide a repository 
for the output data. 

These properties are extremely useful for constructing parallelizing 
compilers, but they only apply to SDF graphs, and optimal schedules can 
only be constructed when the execution times of the actors are known. We 
have been developing techniques that weaken the SDF constraint, thus sup­
porting more general dataflow graphs without resorting to fully dynamic con­
trol [Ha89]. However, these techniques require modification of the MaMA 
controller of the ordered memory architecture. There is still much work to be 
done to find the best design parameters, so in this paper we will retain the 
SDF constraint. 



www.manaraa.com

176 

Optimal compile-time scheduling of precedence graphs derived from 
SOF graphs is one of the classic NP-complete scheduling problems. Many 
simple heuristics have been developed over time, with some very effective 
ones having complexity n 2, where n is the number of actors (see for exam­
ple [Hu61]). However, even n 2 complexity can bog down a compiler. For­
tunately, the granularity of dataflow actors in Gabriel and the small size of 
many signal processing applications means that we can ignore this problem 
for now. To generalize these methods beyond signal processing applications, 
strategies will probably be needed to cluster sets of actors into macro actors, 
thus reducing the number of actors to be considered in constructing a 
schedule. For example, the clustering method proposed in [KimSS] seems 
suitable. 

Static scheduling promises low-cost architectures, at the expense of 
compile-time complexity. For many applications, this is a very attractive 
tradeoff. However, only some applications can be statically scheduled. The 
SOF model, which can be statically scheduled, may appear to lack control 
constructs because it does not permit data-dependent firing of actors. How­
ever, this is not entirely true. Some control structures are possible within 
SOF, notably recurrences, manifest iteration, and conditional assignment. 

3.2. Recurrences 
The dataflow community has recognized the importance of supporting 

recursion, or self-referential function calls. To some extent, this ability has 
become a litmus test for the utility of a dataflow model. The most common 
implementation, however, dynamically creates and destroys instances of 
actors. This is clearly going to be problematic for a static scheduler. 

In imperative languages, recursion is used to implement recurrences 
and iteration, usually in combination. If we avoid the notion of "function 
calls", at least some recurrences can be simply represented as feedback paths 
in a dataflow program graph. This section will study the representation of 
recurrences using feedback. This representation poses no difficulty for static 
scheduling, although to some it lacks the elegance of recursion. 

Recurrences depend on the notion of "delays". Once understood, this 
notion can be used to explain fundamental limits on the concurrency in SOF 
graphs. It can also be used to relate SOF to static dataflow [DenSO]. This is 
done below. 

3.2.1. Delays 
A dataflow graph with a recurrence is represented schematically in 

figure 5. This graph is assumed to fire repeatedly. Borrowing terminology 
from the signal processing community, the feedback path has a delay, indi­
cated with a diamond, which can be implemented simply as an initial token 
on the arc. A set of delays in a dataflow graph corresponds to a marking in 
Petri nets [pet77] or to the "0" tag manipulation operator in the U-interpreter 
[Arv82]. In fact, the symbol "0" was selected to suggest "delay" [ArvS9]. A 
necessary (but not sufficient) condition for avoiding deadlock in an SOF 



www.manaraa.com

1 
A B 

1 

1 1 

Figure 5. A dataflow graph with a recurrence. Recurrences are ex· 
pressed using directed loops and delays. 

graph is that any directed loop in the graph must have at least one delay. 

177 

A delay does not correspond to unit time delay, but rather to a single 
token offset. Such delays are sometimes called logical delays or separators 
to distinguish them from time delays [Jag86]. For SDF graphs, a logical 
delay need not be a run-time operation. Consider for example the feedback 
arc in figure 5, which has a unit delay. The numbers adjacent to the arcs 
indicate the number of tokens produced or consumed when the correspond­
ing actor fires. The initial token on the arc means that the corresponding 
input of actor A has sufficient data, so when a token arrives on its other 
input, it can fire. The second time it fires, it will consume data from the feed­
back arc that is produced by the first firing of actor B. In steady-state, the 
nth firing of actor B will produce a token that will be consumed by actor A 
on its (n + l)'h firing; hence the arc has unit token offset. The value of the 
initial token can be set by the programmer, so a delay can be used to initial­
ize a recurrence. When the initial value is other than zero, we will indicate it 
using the notation D(value). Since delays are simply initial conditions on the 
buffers, they require no run-time overhead. In Gabriel, a delay is a property 
of an arc in the dataflow graph, rather than being an actor. 

3.2.2. Bounds on Performance 
Consider non-terminating algorithms, or algorithms that operate on a 

large data set. For these, directed loops are the only fundamental limitation 
on the parallelizability of the algorithm. This is intuitive because any algo­
rithm without recurrences can be pipelined. A special case of SDF, called 
homogeneous SDF, is where every actor produces and consumes a single 
token on each input and output. For homogeneous SDF graphs, it is easy to 
compute the minimum period at which an actor can be fired. This is called 
the iteration period bound, and is the reciprocal of the maximum computa­
tion rate. The iteration period bound may be much smaller than the time 
required to compute one pass through the dataflow graph. It is a limit on the 
time per pass if an infinite number of passes are computed. 

Let R (L) be the sum of the execution times of the actors in a directed 
loop L. The iteration period bound is the maximum over all directed loops 
L of R (L )/D (L ), where D (L) is the number of delays in L 
[Ren81][Coh85]. The directed loop L that yields this maximum is called the 



www.manaraa.com

178 

critical loop. General SDF graphs can be systematically converted to homo­
geneous SDF graphs for the purpose of computing the iteration period bound 
[Lee86]. If there are no directed loops in the graph, then we define the itera­
tion period bound to be zero, since in principle all firings of each node could 
occur simultaneously. It is important to realize that there is nothing funda­
mental in the following discussion that prevents this. Implementation con­
siderations may make it impractical, however. 

Another limitation on concurrency is the notion of state. Particularly in 
large or medium grain dataflow graphs, it is convenient to permit an actor to 
remember data from one invocation to the next. This is simply modeled as a 
self-loop with a unit delay. Such a self-loop precludes multiple simultaneous 
invocations of the actor, hence this self loop may become the critical loop. 

Once the iteration period bound is known, we can derive a bound on 
the performance of an ordered memory architecture, based on a set of (admit­
tedly) unrealistic assumptions. First, assume we have a completely deter­
ministic dataflow graph, and assume there are enough processors that a 
hypothetically optimal scheduler can meet the iteration period bound. The 
iteration period bound does not reflect bandwidth or latency limitations on 
interprocessor communication, however. For the ordered memory architec­
ture of figure 3, a memory transaction can occur in one cycle of the shared 
memory. If we assume that the shared-memory cycle time is the same as 
local memory cycle time2, then latency adds nothing to the iteration period. 
Bandwidth limitations, however, may add to the iteration period. Each time 
the ideal scheduler schedules two simultaneous memory transactions, one of 
them must be delayed. If one of them is not in the critical path, then that one 
should be delayed, and there may again be no effect on the iteration period. 
If both are in the critical path, then the iteration period will be extended by 
one cycle. If three transactions are scheduled simultaneously, then one of the 
transactions has to be delayed two cycles, increasing the iteration period by 
at most two cycles. If M simultaneous transactions are scheduled, then the 
iteration period increases by at most M -1 cycles. If the total number of 
transactions is T, then the very worst situation increases the iteration bound 
by at most T -1 cycles. 

Suppose now that 10 processors are each running a program that 
accesses shared memory 10% of the time. Then this bound tells us that the 
ordered shared memory architecture can run this program in at most twice 
the time of the theoretical minimum. However, this result should not be 
taken very seriously because the performance will depend much more 
heavily on scheduling heuristics that are used. The performance can be 
better (since simultaneous transactions can be studiously avoided [Sih90]) 
but can also be worse (if. as is likely. a suboptimal scheduling algorithm is 

2 This is actually not a bad assumption for the architecture in figure 3. if the number of 
processors is modest. The main limitation on shared-memory cycle time is likely to be capaci­
tive loading on the shared bus. and the price of the memory. of course. 



www.manaraa.com

179 

used). Furthermore, the use of gateways completely undermines this 
analysis. Thus, this is not a very useful bound. 

3.2.3. Bounded Buffer Sizes 
Although SDF actors cannot be created at runtime, SDF is not the same 

as static dataflow [Den80]. For instance, in SDF, there is no impediment to 
having multiple instances of an actor fire simultaneously, as long as the actor 
does not have state. A particular implementation, however, may impose 
such a constraint. Consider for example an implementation that permits no 
more than one memory location to be associated with each arc. This is the 
key limitation in static dataflow [Den80]. It can be modeled with the 
recurrence in figure 5. The feedback arc begins with an initial token. This 
token represents a "space" on the output buffer of actor A. After A fires, and 
consumes that token, it cannot fire again until after B has fired. Any memory 
limitation on any arc in an SDF graph can be modeled as a feedback path 
with a fixed number of delays. To avoid unnecessarily sacrificing con­
currency, enough memory should be allocated to each arc that the 
corresponding feedback path does not become the critical loop. 

Suppose that in figure 5, actors A and B are scheduled onto different 
processors. In a conventional shared-memory architecture, any buffer size 
limitation implies handshaking at run time. In effect, the feedback path in 
figure 5 has to be implemented at run time, just to carry semaphores that 
indicate when it is safe to write to the feed forward buffer. For the ordered 
memory architecture, however, buffer size limitations can be statically 
modeled by the scheduler. They imply no additional run time overhead. In 
figure 5, the scheduler knows that the write from "A" and the read to "B" 
must alternate. Since the order of the transactions is enforced at runtime 
without semaphores, no additional overhead is incurred. 

3.3. Manifest Iteration 
In manifest iteration, the number of repetitions of a computation is 

known at compile time, and hence is independent of the data. It can be stati­
cally scheduled. Furthermore, it can be expressed in data flow graphs by 
specifying the number of tokens produced and consumed each time an actor 
fires. For example, actor A in figure 6 produces 10 tokens each time it fires, 
as indicated by the "10" adjacent to its output. Actor B consumes one token 
each time it fires, so it will fire ten times for every firing of actor A. In con­
ventional programming languages, this would be expressed with afor loop. 
Nestedfor loops are easily conceived as shown in figure 6. If actors A and E 
fire once each, then B and D will fire ten times, and C will fire 100 times. 
Techniques for automatically constructing static parallel schedules for such 
graphs are given in [Lee87a] and [Sih90]. 

There is no fundamental limitation on the parallelism in figure 6 (there 
are no directed loops). Hence, this scheme solves the first open problem 
listed by Dennis in [Den75], providing the semantics of a "parallel-for" in 
dataflow. 



www.manaraa.com

180 

ABC 0 E 
10 1 10 1 1 10 1 10 

Figure 6. An SDF graph that contains nested iteration. 

3.3.1. Bounded Buffers 
Although there is no fundamental limitation on the parallelism in figure 

6 (there are no directed loops), there may be practical limitations. In figure 
7, we model a buffer of length 10 between actors B & C. Again, the tokens 
on the feedback path represent empty locations in the buffer. Actor B must 
have ten tokens on the feedback path (i.e. ten empty locations in the buffer) 
before it fires. Whenever actor C fires, it consumes one token from the for­
ward path, freeing a buffer location, and indicating the free buffer location by 
putting a token on the feedback path. The minimum buffer size that avoids 
deadlock is ten. 

This non-homogeneous SDF graph could be converted to a homogene­
ous SDF graph and the iteration period bound computed, but in this simple 
example the iteration period bound is easily seen by inspection. It is clear 
that after each firing of B, C must fire ten times before B can fire again. The 
ten firings can occur in parallel, so the minimum period of a periodic 
schedule is R B + R c, where R x is the runtime of actor X. In other words, 
successive firings of B cannot occur in parallel because of the buffer space 
limitations. By contrast if the buffer had length 100, then ten invocations of 
B could fire simultaneously, assuming there are no other practical 
difficulties. Just as with unit length buffers, no additional synchronization 
overhead is required in the ordered memory architecture to support these 
bounded buffers. 

10 B C 1 
A I--~ 10 1 1----+1 0 I---~ E 

10 1 10 1 10 

Figure 7. A modification of figure 6 to model the effect of a buffer of 
length ten between actors Band C. 



www.manaraa.com

181 

3.3.2. Static Buffers 
A second limitation on the parallelism can arise from the addressing 

mechanism of the buffers. Each buffer can be implemented as a FIFO queue, 
as done in Davis' DDM [Dav78]. Delays are correctly handled, but then 
access to the buffer becomes a critical section of the parallel code. FIFO 
queues are economically implemented as circular buffers with pointers to the 
read and write locations. However, parallel access to the pointers becomes a 
problem. If successive invocations of an actor are to fire simultaneously on a 
several processors, then great care must be taken to ensure the integrity of the 
pointers. A typical approach would be to lock the pointers while one proces­
sor has control of the FIFO queue, but this partially serializes the implemen­
tation. Furthermore, this requires that the hardware support an indivisible 
test-and-set operation. 

In the ordered memory architecture, the FIFO implementation can be 
made simpler than in a general shared memory architecture, but a less expen­
sive alternative is static buffering [Lee87b]. Static buffering is based on the 
observation that there is a periodicity in the buffer access that a compiler can 
exploit. It preserves the behavior of FIFO queues (namely it correctly han­
dles delays and ordering of tokens), but avoids read and write pointers. 
Specifically, suppose that all buffers are implemented with fixed-length cir­
cular buffers, implementing FIFO queues, where each length has been pre­
determined to be long enough to sustain the run without causing a deadlock. 
Then consider an input of any actor in an SDF graph. Every N firings, where 
N is to be determined, the actor will get its input token(s) from the same 
memory location. The compiler can hard-code these memory locations into 
the implementation, bypassing the need for pointers to the buffer. Sys­
tematic methods for doing this, developed in [Lee87b), can be illustrated by 
example. Consider the graph in figure 7, which is a representation of figure 
6 with the buffer between B and C assigned the length 10. A parallel imple­
mentation of this can be represented as follows: 

FIRE A 
DO ten times { 

FIREB 

} 
FIREE 

DO in parallel ten times { 
FIREC 

} 
FIRED 

Fot: each parallel firing of C, the compiler supplies a specific memory loca­
tion for it to get its input tokens. Notice that this would not be possible if the 
FIFO buffer had length 11, for example, because the second time the inner 
DO loop is executed the memory locations accessed by C would not be the 
same as the first time. But with a FIFO buffer of length 10, invocations of C 
need not access the buffer through pointers, so there is no contention for 
access to the pointers. The buffer data can be supplied to all ten firings in 



www.manaraa.com

182 

parallel, assuming the hardware has a mechanism for doing this. In the 
ordered memory architecture, the ten firings cannot be initiated simultane­
ously, because of bus bandwidth limitations. However, they can be initiated 
at intervals of one shared-bus cycle. If this cycle time is small compared to 
the execution time of the actors, then the concurrency in the parallel for is 
adequately exploited. 

An alternative to static buffering that also permits parallel firings of 
successive instances of the same actor is token matching [Arv82]. However, 
even the relatively low cost of some implementations of token matching 
[Pap88] would be hard to justify for SOF graphs, where static buffering can 
be used. 

In figure 6 we use actors that produce more tokens than they consume, 
or consume more tokens than they produce. Proper design of these actors 
can lead to iteration constructs semantically similar to those encountered in 
conventional programming languages. In figure 8 we show three such actors 
that have proved useful in OSP applications. The first, figure 8a, simply 
emits the last of N tokens, where N is a parameter of the actor. The second, 
figure 8b, takes one input token and repeats it on the output. The third, figure 
8c, takes one input token each time it fires, and emits the last N tokens that 
arrived. It has a self-loop used to remember the past tokens (and initialize 
them). This can be viewed as the state of the actor; it effectively prevents 
multiple simultaneous invocations of the actor. 

A complete iteration model must include the ability to nest recurrences 
within iteration and to initialize the recurrences when the iteration begins. 
The SOF model can handle this. We will illustrate this with a finite impulse 
response (FIR) digital filter because it is a simple example. An FIR filter 
computes the inner product of a vector of coefficients and a vector with the 
last N input tokens, where N is the order of the filter. It is usually assumed 
to repeat forever, firing each time a new input token arrives. Consider the 
possible implementations using a data flow graph. A large grain approach is 
to define an actor with the implementation details hidden inside. This is the 
preferred approach in Gabriel. An alternative is a fine grain implementation 
with multiple adders and multipliers and a delay line. A third possibility is 

(a) (b) (c) 

Figure 8. Three SDF actors useful for iteration. 



www.manaraa.com

183 

to use iteration and a single adder and multiplier. The first and last possibili­
ties have the advantage that the complexity of the data flow graph is indepen­
dent of the order of the filter. A good compiler should be able to do as well 
with any of the three structures. One implementation of the last possibility is 
shown in figure 9. The iteration actors are drawn from figure 8. The COEF­
FICIENTS actor simply outputs a stream of N coefficients; it produces one 
coefficient each time it fires, and reverts to the beginning of the coefficient 
list after reaching the end. It could be implemented with a directed loop with 
N delays, or a number of other ways. The product of the input data and the 
coefficients is accumulated by the adder with a feedback loop. The output of 
the filter is selected by the "last of N" actor. 

The FIR filter in figure 9 has the advantage of exploitable concurrency 
combined with a graph complexity that is independent of the order of the 
filter. Note, however, that there is a difficulty with the feedback loop at the 
adder. Recall from above that a delay is simply an initial token on the arc. If 
this initial token has value zero, then the first output of the FIR filter will be 
correct. However, after every N firings of the adder, we wish to reset the 
token on that arc to zero. This could be done with some extra actors, but a 
fundamental difficulty would remain. The presence of that feedback loop 
implies a limitation on the parallelism of the FIR filter, and that limitation 
would be an artifact of our implementation. Our solution is to introduce the 
notion of a resetting delay, indicated with a diamond containing an R. 

3.3.3. Resetting Delays 
A resetting delay is associated with a subgraph, which in figure 9 is sur­

rounded with a dashed line. For each invocation of the subgraph, the delay 
token is re-initialized to zero. Furthermore, the scheduler knows that the pre­
cedence is broken when this occurs, and consequently it can schedule succes­
sive FIR output computations simultaneously on separate processors. 

The resetting delay can be used in any SDF graph where we have 
nested iterations where the inner iterations involve recurrences that must be 
initialized. In other words, anything of the form: 

r---------------------------------------------------I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

LAST LAST I 

N OFN 

Figure 9. An FIR filter implemented using a single multiplier and adder. 



www.manaraa.com

184 

DO some number of times { 
Initialize X 
DO some number of times ( 

newX=f(X) 

The implementation of a resetting delay is simple and general. For the 
purposes of implementation, the scheduler first treats the delay as if it were 
an actor that consumes one token and produces one token each time it fires. 
Recall that in practice no runtime operation is required to implement a delay, 
so there actually is no such actor. However, by inserting this mythical actor, 
the scheduler can detennine how many times it would fire (if it did exist) for 
each firing of the associated subgraph. The method for doing this is given in 
[Lee87a], and consists of solving a simple system of equations. For each 
resetting delay, the scheduler obtains a number N of invocations between 
resets; this number is used to break the precedence of the arc for every Nth 
token and to insert object code that re-initializes the delay value. The 
method works even if the subgraph is not invoked as a unit, and even if it is 
scattered among the available processors. It is particularly simple when in­
line code is generated. However, when the iteration is implemented by the 
compiler using loops, then a small amount of run-time ovemead may have to 
associated with some delays in order to count invocations. 

So far we have shown that neither manifest iteration nor recurrences 
present a fundamental problem for the SDF model. Resetting delays can be 
used to initialize recurrences within nested iterations. Hence corresponding 
programming constructs can be efficiently and automatically implemented on 
an ordered memory architecture. Conditionals are a bit more problematic. 

3.4. Conditional Assignment 
Conditionals in dataflow graphs are harder to describe and schedule 

statically. One attractive solution is a mixed-mode programming environ­
ment, where the programmer can use dataflow at the highest level and con­
ventionallanguages such as C at a lower level. Gabriel is precisely such an 
environment. Conditionals would be expressed in the conventional 
language. TIlls is only a partial solution, however, because conditionals 
would be restricted to lie entirely within one large grain actor, and con­
currency within such actors is difficult to exploit. If the complexity of the 
operations that are perfonned conditionally is high, then this approach is not 
adequate. Furthennore, conditionals within an actor usually imply a non­
detenninistic execution time of the actor. If the variability of the possible 
execution times is high, the performance of the ordered memory architecture 
will suffer. 

A simple alternative that is sometimes suitable is to replace conditional 
evaluation with conditional assignment. The functional expression 



www.manaraa.com

185 

Y f- if (c) then f (x ) else g (x) 

can be implemented as shown in figure 10. The MUX actor consumes a 
token on each of the T, F, and control inputs and copies either the T or F 
token to the output. Hence, both f (x) and g (x) will be computed and only 
one of the results will be used. When these functions are simple, this 
approach is efficient; indeed it is commonly used in deeply pipelined proces­
sors to avoid conditional branches. For hard-real-time applications, it is also 
efficient when one of the two subgraphs is simple. Otherwise, however, the 
cost of evaluating both subgraphs may be excessive, so alternative tech­
niques are required. 

4. A NOTE ON QUASI-STATIC SCHEDULING 
The domain of applications of the ordered memory architecture is con­

strained by the need to statically order shared memory accesses. An 
automatic parallelizing compiler has been written to work with SDF graphs 
where the actor execution times are reasonably predictable. Since the SDF 
model supports recurrences, manifest iteration, and conditional assignment, it 
is not as limited as might first appear. Nonetheless, it is worth attempting to 
weaken the constraints of the SDF model in order to encompass more appli­
cations. At Berkeley we have been developing quasi-static scheduling stra­
tegies that may solve some of these problems [Ha89]. The basic principle is 
that dynamic control is used only where absolutely necessary. For instance, 
with an if-then-else, control is dynamically transferred to one of two stati­
cally scheduled subgraphs. Similarly, for a data-dependent iteration (such as 
a do-while), a static schedule for each cycle of the iteration is dynamically 
repeated. The challenge, of course, is to develop strategies for constructing 
the static schedules for the subgraphs. Furthermore, these techniques imply 
changes to the ordered memory architecture. The MOMA controller can no 
longer simply passively step through a static list of processors to which it 
must grant the bus. Instead, it has to follow the control path of the 

}-----i'tT 

x 

}----~F 

c 

M 1 

U 

X 

y 

Figure 10. A dataflow graph with conditional assignment. Both f (-) and 
g (-) are evaluated, and only one of the two outputs is selected. 



www.manaraa.com

186 

distributed executing program. The challenge is to accomplish this without 
increasing the complexity of the controller so much that the advantages of 
ordered memory accesses evaporate. This is an active and promising line of 
inquiry. 

5. CONCLUSIONS 
It is well known that data-independent dataflow graphs can be 

scheduled statically, obviating the need for additional runtime hardware to 
control the execution. We have illustrated low-cost parallel architectures that 
take advantage of this, and have shown that shared data structures can be also 
be supported efficiently. A software simulation of an ordered memory archi­
tecture has been built along with a compiler that fully automates the map­
ping. The compiler begins with a large grain dataflow graph that conforms 
with the synchronous dataflow model of computation. This SDF model, 
although limited, can support recurrences, manifest iteration, and conditional 
assignment. The execution times of actors can vary slightly without seri­
ously affecting the implementation, but wide variations can have consider­
able adverse impact on execution speed. For applications with little decision 
making, such as signal processing and some scientific computing, this 
approach appears attractive. To broaden the application base, quasi-static 
scheduling may provide a solution by introducing dynamic control only 
where absolutely necessary [Ha89]. 

REFERENCES 

[Arv82] 
Arvind and K. P. Gostelow, "The U-Interpreter", Computer 15(2), February 
1982. 

[Arv87] 
Arvind, R. S. Nikhil, and K. K. Pingali, "I-structures: Data Structures for 
Parallel Computing", Computation Structures Group Memo 269, MIT, Febru­
ary 1987 (revised March 1989). Also to appear in ACM Transactions on Pro­
gramming Languages and Systems. 

[Arv89] 
Arvind, private communication, 1989. 

[Bie89] 
J. C. Bier and E. A. Lee, "Frigg: A Simulation Environment for Multiple­
Processor DSP System Development", Proceedings of the International 
Conference on Computer Design. Boston. October 2-4, 1989. 

[Bie90] 
J. Bier and E. A. Lee, "A Class of Multiprocessor Architectures for Real-Time 
DSP", Proc. of the Int. Con/. on Circuits and Systems, New Orleans, May, 
1990. 

[Bur8I] 
F. W. Burton and M. R. Sleep, "Executing Functional Programs on A Virtual 



www.manaraa.com

187 

Tree of Processors", Proc. ACM Con! Functional Programming Lang. Com­
put. Arch., pp. 187-194, 1981. 

[Cha84] 
M. Chase, "A Pipelined Data Flow Architecture for Signal Processing: the 
NEC uPD7281", VLSI Signal Processing, IEEE Press, New York (1984) 

[Chu80] 
W. W. Chu, L. J. Holloway, L. M.-T. Lan, and K. Efe, "Task Allocation in 
Distributed Data Processing", IEEE Computer, pp. 57-69, November, 1980. 

[Chu87] 
W. W. Chu and L. M.-T. Lan, "Task Allocation and Precedence Relations for 
Distributed Real-Time Systems", IEEE Trans. on Computers, C-36(6), pp. 
667-679, June 1987. 

[Coh85] 
G. Cohen, D. Dubois, J. P. Quadrat, and M. Viot, "A Linear-System-Theoretic 
View of Discrete-Event Processes and its Use for Performance Evaluation in 
Manufacturing", IEEE Trans. on Automatic Control, AC-30, 1985, pp. 210-
220. 

[Cor79] 
M. Cornish, D. W. Hogan, and J. C. Jensen, "The Texas Instruments Distri­
buted Data Processor", Proc. Louisiana Computer Exposition, Lafayette, La., 
pp. 189-193, March 1979. 

[Dav78] 
A. L. Davis, "The Architecture and System Method of DDMl: A Recursively 
Structured Data Driven Machine", Proc. Fifth Ann. Symp. Computer Architec­
ture, April, 1978, pp. 210-215. 

[Den75] 
J.B. Dennis, "First Version Data Flow Procedure Language", Technical Memo 
MAC TM61 , May, 1975, MIT Laboratory for Computer Science. 

[Den80] 
J. B. Dennis, "Data Flow Supercomputers" Computer, 13 (11), November 
1980. 

[Den88] 
J. B. Dennis and G. R. Gao "An Efficient Pipelined Dataflow Processor Archi­
tecture" To appear in Proceedings 0/ the IEEE, also in the Proc. ACM 
SIGARCH Con! on Supercomputing, Florida, Nov., 1988. 

[Dri86] 
J. Driscoll, N. Sarnak, D. Sleator, and R. Tarjan, "Making Data Structures Per­
sistent", in Proc. o/the 18th Ann. ACM Symp. on Theory o/Computing, Berke­
ley, CA, pp.l09-121, May 1986. 

[Efe82] 
K. Efe, "Heuristic Models of Task Assignment Scheduling in Distributed Sys­
tems" ,IEEE Computer, pp. 50-56, June, 1982. 

[Fis84] 
J. A. Fisher, "The VLIW Machine: A Multiprocessor for Compiling Scientific 
Code", Computer, July, 1984,17(7). 

[Gao88] 
G. R. Gao, R. Tio, and H. H. J. Hum, "Design of an Efficient Dataflow 



www.manaraa.com

188 

Architecture without Data Flow", Proc. Int. Con! on Fifth Generation Com­
puter Systems, 1988. 

[Gau86] 
J. L. Gaudiot, "Structure Handling in Data-Flow Systems", IEEE Trans. on 
Computers, C·35(6), June 1986. 

[Gau87] 
J. L. Gaudiot, "Data-Driven Multicomputers in Digital Signal Processing", 
IEEE Proceedings, Vol. 75, No.9, pp. 1220-1234, September, 1987. 

[Gra87] 
M. Granski, I. Koren, and G.M. Silberman, "The Effect of Operation Schedul­
ing on the Performance of a Data Flow Computer", IEEE Trans. on Comput­
ers, C·36(9), September, 1987. 

[Ha89] 
S. Ha and E. A. Lee, "Compile-time Scheduling and Assignment of Dataflow 
Program Graphs with Data-Dependent Iteration", Memorandum no. UCB/ERL 
M89/57, Electronics Research Lab, U. C. Berkeley, Berkeley, CA 94720. 

[Hoa78] 
C. A. R. Hoare, "Communicating Sequential Processes", Communications of 
the ACM, August 1978,21(8) 

[Hu61] 
T. C. Hu, "Parallel Sequencing and Assembly Line Problems", Operations 
Research, 9(6), pp. 841-848,1961. 

[Hud86] 
P. Hudak, "A Semantic Model of Reference Counting and its Abstraction", in 
Proc. of the 1986 ACM Con! on Lisp and Functional Programming, MIT, 
Cambridge, MA, pp. 351-363, August, 1986. 

[Ian88] 
R. A. Iannucci, "A Dataflow/von Neumann Hybrid Architecture", Technical 
Report TR-418, MIT Lab. for Computer Science, 545 Technology Square, 
Cambridge, MA 02139, May 1988. 

[Iqb86] 
M. A. Iqbal, J. H. Saltz, and S. H. Bokhari, "A Comparative Analysis of Static 
and Dynamic Load Balancing Strategies", Int. Con! on Parallel Processing, 
pp. 1040-1045, 1986. 

[Jag86] 
H. V. Jagadish, R. G. Mathews, T. Kailath, and J. A. Newkirk, "A Study of 
Pipelining in Computing Arrays", IEEE Trans. on Computers, C-3S(S), May 
1986. 

[KeI84] 
R. M. Keller, F. C. H. Lin, and J. Tanaka, "Rediflow Multiprocessing", Proc. 
IEEE COMPCON, pp. 410-417, February, 1984. 

[Kim88] 
S.J. Kim and J.e. Browne, "A General Approach to Mapping of Parallel Com­
putations upon Multiprocessor Architectures", Proceedings 1988 International 
Conference on Parallel Processing, August, 1988, pp. 1-8. 

[Kun87] 
J. Kunkel, "Parallelism in COSSAP", Internal Memorandum, Aachen 



www.manaraa.com

University of Technology, Fed. Rep. of Germany, 1987. 

[Kun88] 

189 

S. Y. Kung, VLSI Array Processors, Prentice-Hall, Englewood Cliffs, NJ 
(1988). 

[Lee86] 
E. A. Lee, "A Coupled Hardware and Software Architecture for Programm­
able Digital Signal Processors", Memorandum No. UCBIERL M86154, EECS 
Dept, UC Berkeley (phD Dissertation), 1986. 

[Lee87a] 
E. A. Lee and D. G. Messerschmitt, "Static Scheduling of Synchronous Data 
Flow Graph for Digital Signal Processing",IEEE Trans. on Computers, Janu­
ary,1987. 

[Lee87b] 
E. A. Lee and D. G. Messerschmitt, "Synchronous Data Flow" ,IEEE Proceed­
ings, September, 1987. 

[Lee88] 
E. A. Lee, "Programmable DSP Architectures, Part 1", ASSP Magazine, 
October, 1988. 

[Lee89a] 
E. A. Lee, "Programmable DSP Architectures, Part II", ASSP Magazine, Janu­
ary,1989. 

[Lee89b] 
E. A. Lee, W.-H. Ho, E. Goei, 1. Bier, and S. Bhattacharyya, "Gabriel: A 
Design Environment for DSP",IEEE Trans. on ASSP, November, 1989. 

[Lu86] 
H. Lu and M. J. Carey, "Load-Balanced Task Allocation in Locally Distri­
buted Computer Systems"'/nt. Conf. on Parallel Processing, pp. 1037-1039, 
1986. 

[Ma82] 
P. R. Ma, E. Y. S. Lee and M. Tsuchiya, "A Task Allocation Model for Distri­
buted Computing Systems",IEEE Trans. on Computers, Vol. C-31, No. I, pp. 
41-47, January, 1982. 

[Muh87] 
H. Muhlenbein, M. Gorges-Schleuter, and O. Kramer, "New Solutions to the 
Mapping Problem of Parallel Systems: The Evolution Approach", Parallel 
Computing, 4, pp. 269-279,1987. 

[Nik89] 
R. S. Nikhil and Arvind, "Can Dataflow Subsume von Neumann Computing?", 
Proc. of the 16th Annual Int. Symp. on Computer Architecture, Jerusalem, 
Isreal, May 28 - June 1, 1989. 

[pap88] 
. G. M. Papadopoulos, Implementation of a General Purpose Dataflow Mul­

tiprocessor, Dept. of Electrical Engineering and Computer Science, MIT, PhD 
Thesis, August, 1988. 

[pet77] 
J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall 
Inc., Englewood Cliffs, NJ, 1981. 



www.manaraa.com

190 

[pla76] 
A. Plas, et. al., "LAU System Architecture: A Parallel Data-driven Processor 
Based on Single Assignment", Proc. 1976 Int. Con! Parallel Processing, pp. 
293-302. 

[Ren81] 
M. Renfors and Y. Neuvo, "The Maximum Sampling Rate of Digital Filters 
Under Hardware Speed Constraints", IEEE Trans. on Circuits and Systems, 
CAS-28(3), March 1981. 

[Sih90] 
G. Sih and E. A. Lee, "Scheduling to Account for Interprocessor Communica­
tion within Interconnection-Constrained Processor Networks", Proc. Int. Con! 
on Parallel Processing, August, 1990. 

[Wat82] 
I. Watson and J. Gurd, "A Practical Data Flow Computer", Computer 15 (2), 
February 1982. 

[Zis87] 
M. A. Zissman and G. C. O'Leary, "A Block Diagram Compiler for a Digital 
Signal Processing MIMD Computer", IEEE Int. Con! on ASSP, pp. 1867-
1870,1987. 



www.manaraa.com

8 
DESIGN OF ASYNCHRONOUS PARALLEL 

ARCHITECTURES 

Teresa H.-Y. Meng 
Department of Electrical Engineering 

Stanford University 

One major difficulty in implementing high performance parallel architec­
tures resides in global interdependencies such as arise from clock and data 
synchronization. To effectively alleviate the design difficulties in global 
synchronization, we need to establish a modular and flexible design frame­
work, in which the path connecting system architectures to physical imple­
mentations can be formally defined and the distance between them be 
reduced. Asynchronous design, which does not require a global clocking 
signal, provides a modular design approach to implementing parallel archi­
tectures without compromising the global performance. Asynchronous 
design can support fast-prototyping of parallel processing systems with a 
minimal amount of design effort, by providing an interconnect strategy 
which allows the overall system performance to be improved by individual 
optimization of computation modules. This allows the equivalent of the 
object oriented software methodology to be applied to hardware design. In 
this chapter, we will describe the fundamentals of asynchronous circuits and 
demonstrate the ease with which asynchronous parallel architectures can be 
realized through automated synthesis tools. 

This research is sponsored in part by the Office of Naval Research under the 
ONR Young Investigator program with contract number NOOO14. 



www.manaraa.com

192 

1. INTERCONNECTION OF SYSTEM MODULES 

As we develop VLSI systems with ever faster digital circuits, the distribu­
tion and synchronization of a global clock becomes a bottleneck to system 
throughput. It has already become clear that system clock speeds are start­
ing to significantly lag behind logic speeds of the underlying technology. 
While gate delays are well below 1 nanosecond in advanced CMOS technol­
ogy, clock rates of more than 100 Mhz are difficult to attain. In order to 
achieve high performance, extensive design and simulation effort is 
required. This problem will become worse in the future as the complexity 
of our chips and systems, and the speed of logic, increase further. 

An alternative approach is to use asynchronous design, which eliminates the 
need for a global clock and circumvents problems associated with global 
clock synchronization. At the chip design level, asynchronous interfaces 
can be used between modules within a chip. Since there are no global tim­
ing considerations, the design time spent on layout and circuit timing simu­
lation can be greatly reduced. At the board design level, systems built using 
this approach can be easily extended without problems in global synchroni­
zation. This is particularly important for signal processing applications 
using parallel pipelined architectures, where computation hardware can be 
extended by pipelining without any degradation in overall system 
throughput. 

In the past, the circuit and delay time overhead associated with asynchro­
nous design was sufficiently high so that asynchronous circuits have not 
been widely used. However, many examples can be found now, even in 
critical performance areas. The VME bus interface is fully asynchronous, as 
a system clock is not used in validating data transfers (although the clock 
may be propagated over the bus). At a lower level standard state-of-the-art 
microprocessors, such as the 68000 series, use an asynchronous interface 
with a four-phase handshake for memory and I/O transfers. 

One strategy is therefore as follows: a set of modules will be defined that 
have an asynchronous interface at their boundary. The only constraint on the 
modules is that they have a completion signal, which indicates when the 
module has completed its processing. A set of deterministic algorithms for 
determining the interface circuits between the modules have been 
developed. [1]. Based on this approach, an arbitrarily complex system with 
a structural description can be designed without having to be concerned with 
the underlying timing considerations. 



www.manaraa.com

193 

1.1. Fully Asynchronous Design 
In the past, the use of asynchronous circuitry is more prevalent at the higher 
levels of the system design hierarchy, such as the VME bus. The reason for 
this is that at the higher levels the complexity of interconnect is simple 
enough that a proper design can be made without sophisticated synthesis 
tools. At the lower levels of design, concerns about hazard and race condi­
tions embedded in asynchronous logic and the inherent metastability 
phenomenon in arbiters are often mentioned. Another major factor is that 
logic has been slow relative to typical clock speeds, in which case the 
handshake circuit overhead is substantial. 

In spite of these concerns, significant theoretical worlc has been done on 
asynchronous logic design. Asynchronous logic networks with bounded 
delay elements have been investigated, often referred to as the Huffman 
model [2]. Hazard-free logic networlcs can be designed by proper assump­
tions on gate delays and by restricting changes of inputs to a single variable 
at a time [3]. However, these classical design procedures for asynchronous 
logic are error-prone and require exponentially complex enumeration. 
Furthermore, the restriction on input signals puts a severe limitation on the 
kind of asynchronous circuits that can be realized. Research on asynchro­
nous circuits with unbounded gate delays have used data detectors and 
spacers or coding schemes [4]. Again, these methods involve precaution in 
the design phase to encode data lines and needs at least twice the hardware 
to compute coded data. 

One approach to eliminating some of these problems is based on the syn­
thesis of asynchronous self-timed circuits from a high-level specification 
[1]. Self-timed circuits differ from the early asynchronous circuits in that 
they can be designed to be speed-independent; i.e. their behavior does not 
depend on any relative delays among physical gates [5,6,4]. An asynchro­
nous self-timed circuit is called delay-insensitive if, besides being speed­
independent, its behavior does not depend on the wire delays within a 
module (this module can be as large as a system or as small as a gate). As 
shown by Martin in [7], truly delay-independent circuits are of only limited 
use. Most of the asynchronous circuits discussed in this chapter are speed­
independent, but not insensitive to wire delays (although they are insensitive 
to the wire delays between modules). Since asynchronous speed­
independent circuits guarantee correct timing by synthesis, timing simula­
tions are required only to predict performance but not to verify correctness. 

We are primarily concerned with designing asynchronous parallel architec­
tures of desired properties from a system point of view, as opposed to 
confining our attention to certain circuit modules. Therefore we start the 
discussion with an overview of the proposed design methodology; we call it 
the fully asynchronous design approach. It uses extra handshaking leads to 



www.manaraa.com

194 

avoid the distribution of a clock signal, and data synchronization is accom­
plished by a four-phase handshake protocol. We will also introduce a logic 
family which supports this protocol. 

There are basically two modules in a parallel system: computation modules 
for operation calculation and interconnection modules for data transfers 
(shown in figure 1). Computation modules, which includes combinational 
logic such as shifters and multipliers and memory elements such as RAMs 
and ROMs, perform processor operations. Interconnection modules, which 
include data transfer circuits such as pipeline registers and multiplexers 
(indicated in figure 1 by blocks filled with hashed lines), handle transfers of 
both control and data signals. A computation module generates a comple­
tion signal to indicate valid output and to request a data transfer. An inter­
connection module operates on these completion and request signals and 
insures that data are correctly transferred regardless of the relative delays 
among these handshake signals. 

1'7'""::,....,.,7-::......., Pi~line 
register 

17""':,....,.,7-::......., Pi~line 
regISter 

Shifter Multiplier 

Figure 1. Using the block diagram design approach. a digital design 
can be specified by decoupled computation modules and interconnec­
tion modules. 



www.manaraa.com

195 

The interconnection protocol used can be the standard four-phase handshake 
[8] or the more efficient two-phase handshake. The four-phase handshake 
protocol [9] allows the use of only level sensitive logic if interconnection 
modules are properly designed. The two-phase handshake protocol uses a 
signal edge, rising or falling, to indicate a data transfer. While this can be 
more efficient in timing overhead, to sense a signal edge will require the use 
of edge sensitive logic and thus may complicate the circuit design. In this 
chapter, we will use the four-phase handshake as the interconnection proto­
col. 

1.2. Computation Modules 
One type of computation modules is combinational logic for memoryless 
function evaluation, and the other has memory elements for program control 
and data accessing. It has been shown that two binary handshake signals 
(request and complete signals in our case) are necessary and sufficient to 
realize general asynchronous networks with unbounded gate delays [8]. For 
efficient hardware implementation, any combinational operation can be con­
veniently combined into one computation module, given that request and 
completion signals are generated along the datapath. Memory elements can 
be handled in the same way, as long as the memory access mechanism is 
initiated by a request signal and ended with a completion signal. 

Our experimental implementations employ a logic family, differential 
cascode voltage switch logic (DCVSL) [10,11], to generate completion sig­
nals for combinational logic in a general way. A DCVSL computation 
module is shown in figure 2. where the request signal can be viewed, for 
the moment, as the completion signal from the preceding module. When 
request is low, the two output data lines would be pulled up by the p -MOS 
transistors and the complete signal will be low. When request goes high, 
which indicates that the computation of the preceding module has been 
completed and the differential input lines (both control and data) are stable 
and valid for evaluation, the two p -MOS transistors would be cut-off and 
the input lines will be evaluated by the NMOS tree. The NMOS logic tree is 
designed such that only one of the output data lines (two lines per data bit) 
will be pulled down by the NMOS tree once and only once, since there is no 
active pull-up device; then the complete signal will be set high by the 
NAND gate. Feedback transistors can be used at the output data lines to 
make DCVSL static. 

Differential inputs and outputs are necessary for completion signal genera­
tion. Existing logic minimization algorithms [12] can be used to design dif­
ferential NMOS logic trees, with a result that the hardware overhead is 
minimal compared with dynamic circuits. DCVSL has been found to offer a 
perfonnance advantage compared with primitive NAND/NOR logic fami­
lies, since NMOS logic trees are capable of computing complex Boolean 



www.manaraa.com

196 

Request 

Out 

Input Out 
~---..r'----------'I 

NMOS Tree 

Request 

Figure 2. A schematic diagram of DCVSL for completion signal genera­
tion. The completion signal Complete goes high when output data lines 
become stable and stays low when Request is precharging the NMOS 
tree. 

functions within a single gate delay [13]. Several DCVSL computation 
modules commonly used in signal processing, such as arithmetic-Iogic­
units, shifters, and multipliers, have been designed and demonstrated a 
speed comparable to their synchronous counterparts [11,14]. The routing of 
differential input and output lines often requires on the order of a 40% 
active area penalty. 

1.3. Interconnection Modules 
An interconnection module operates on the completion signals generated by 
computation modules so that data are properly transferred. Since requests 
for communication may be issued at any time, an interconnection circuit is 
ideally designed such that no erroneous behavior will occur under all possi­
ble variations in module time and gate delays. The circuit behavior is thus 
independent of the relative delays among circuit elements. This kind of the 
circuits are usually called speed-independent or self-timed circuits. 

As an example, the simplest interconnection circuit is a pipeline handshake 
circuit. Figure 3 shows two computation modules labeled A and B con­
nected in a pipeline. Because of the pipeline handshake circuit, block A can 
process the next data sample while block B processes the current sample. 
Since block A might take longer to finish than block B or vice versa, an 



www.manaraa.com

197 

acknowledge (Ai,.) signal is necessary to indicate when block B has com­
pleted its task and is ready for the next data sample. The handshake circuit 
must prevent run-away conditions (samples being overwritten at the input to 
block B if block B has a long computation latency) or continual feeding 
(samples being computed more than once by block B if block A has a long 
latency). Other types of asynchronous handshake circuits display similar 
requirements. 

A procedure for interconnection circuit synthesis that meets these require­
ments is constructed by modeling computation modules as adding uncon­
trolled transmission delays between the tenninals of interconnection cir­
cuits. The procedure we developed allows us to optimize the design of an 
interconnection circuit as we perfonn the synthesis. Starting from a high­
level specification, we describe a detenninistic synthesis algorithm with no 
heuristics. The logic synthesized is guaranteed to be hazard-free with the 
fastest operations (maximum concurrency) among all the circuits that 
behave according to the same specification. Since the output of the algo­
rithm is in the fonn of Boolean expressions, hardware complexity of the real 
circuit implementation can be minimized using standard Boolean minimiza­
tion algorithms. During the synthesis process, designers can be interactively 
advised of the perfonnance consequence of their specifications. 

BLOCK A t--_R_in-+f/ Rout BLOCKB 

Ain 

Pipeline 
Interconnection Circuit 

Figure 3. A simple example of an interconnection circuit: a pipeline in­
terconnection circuit that controls data transfers between computation 
modules A and B. 



www.manaraa.com

198 

2. INTERCONNECTION CIRCUIT SYNTHESIS 

Recently asynchronous circuit synthesis has become an active research area 
[15,16]. Trace theory and Petri nets were both proposed for synthesis of 
speed-independent circuits from a behavioral description that describes 
circuit's trace structures [17,18]. But two consequences of these approaches 
are that the resulting circuits tend to be complex and that the degree of con­
currency realized in the synthesized circuits cannot be directly addressed. 
The same problem arises in defining speed-independent modules that can be 
compiled together to form specific circuit functions. 

Synthesis of speed-independent interconnection circuits using signal transi­
tion graphs [15] appears to be a promising approach. In a signal transition 
graph, the rising transition of a signal x is denoted as x+ and a falling transi­
tion as x-. An arc in a signal transition graph represents a causal relation: 
for example, x+ ~ y+ means that x must have gone high before y can go 
high. We say that x+ enables y+ and y+ is enabled by x+. Given a signal 
transition graph, the synthesis process modifies the graph to satisfy a 
number of syntactic requirements and derives a logic implementation from 
the modified graph. The signal transition graph provides a clear view of 
potential circuit hazards and admits rules to preclude these hazards. 
Nevertheless, the initial stage of constructing a signal transition graph from 
a desired control operation is non-trivial. 

2.1. Interconnection Circuit SpeCifications 
Experience has shown that describing circuit behavior, even with the 
abstraction of signal transition graphs, is a tedious task and often gives 
suboptimum solutions because of suboptimum specifications. We need a 
higher level description than signal transition graphs. We therefore describe 
an alternative high-level specification, the guarded command [19]. 

The basic construct of a guarded command is a statement list prefixed by a 
Boolean expression [precondition ~ statements]: Only when the precondi­
tion is true, will the statement list be eligible for execution. A list of legal 
guarded command constructs are given in table 1. A guarded command is 
formed by combining basic constructs in a language syntax formally defined 
in [19]. The precondition specified in a guarded command is the minimum 
information on circuit behavior necessary for circuit synthesis. 

The simplest interconnection circuit is a handshake circuit implementing the 
pipelined architecture shown in figure 3. The four-phase handshake proto­
col dictates that the sequence of signal transitions on the right hand side of 
the pipeline handshake circuit is always the iterative R/Ul ~ A~ ~ RoUt ~ 
A~ and on the left hand side R~ ~ Aot ~ R~ ~ AoUt . In synthesizing the 
Boolean functions for AOUl and RaUl' if too weak a condition were used to 



www.manaraa.com

199 

Detenninistic Guarded Commands 
Notation Interpretation 

Basic guarded command: C is a pre -condition and S is a list of 
[C ~S] statements to be executed if C is true. 
AND command: Cj is a pre-condition and S is to be 
[C 1 nC2n'" nC" ~ S] executed if every Cj is true. 
OR command: S is to be executed if anyone of Cj is 
[CIUC2U"'UC" ~S] true. But for the purpose of detenninism, 

only one of Cj can be true at a time. 
Sequential Construct: C 2 can be tested only after S 1 has been 
[Cl~Sl; C2~S21 executed. 
Parallel Construct: The two clauses Cl ~ Sl and C2 ~ S2 
[Cl~Sl II C2~S21 can be processed concurrently. 
Alternative Construct: Sj is executed if Cj is true, but only one 
[C 1 ~slIC2~S21 of the Cj can be true at a time. 
Repetitive construct: The clause [C ~ S] is to be repeatedly 
* [C ~ S] executed. 

Table 1. Legal constructs of deterministic guarded commands. 

raise Aout or Rout, run-away conditions or continual feeding might occur 
(this problem was addressed in the design in [20]). If too strong a condition 
were used to ensure proper operation, the handshake circuit may incur an 
unnecessary long delay in response to a request and suffer a low percentage 
of hardware utilization (this happens in [21]). The design of a reliable and 
fast handshake circuit is therefore not necessarily straightforward. 

The minimal requirement for a pipeline handshake circuit is that signal tran­
sitions follow the four-phase handshake sequences. To specify these 
assumed sequences for every possible connection in a signal transition graph 
shifts attention from circuit behavior, our primary concern, to internal 
details of signal transitions. More importantly, it makes it difficult to deter­
mine an optimum specification. Therefore we describe a circuit property 
called semi-modularity to guide the signal transition behavior from a 
guarded command specification. 

2.2. Weakest Semi-Modularity Conditions 
Guarded commands specify the necessary conditions for the correct 
behavior of an interconnection circuit. To bridge the gap between this 
behavioral specification and its circuit implementation, we need only 
strengthen the guarded preconditions until they are also sufficient to fonn a 



www.manaraa.com

200 

semi -modular circuit. This can be defined as being when all signal transi­
tions in that circuit have the property that once the transition is enabled, 
only the firing of the transition can disable it [8]. By disabling a transition 
we mean that the enabling condition does not hold any more. For example, 
if x+ enables y+, semi-modularity requires that only after y has actually 
gone high (y+), can x go low (x-). Semi-modularity is sometimes confused 
with the persistence condition [15] often sited in Petri net analysis. Since a 
signal transition graph is an interpreted Petri net, the persistence property 
defined on uninterpreted Petri nets cannot describe the disabling condition. 
Hence semi-modularity is a stronger condition than the persistence property 
defined in Petri nets. It is this stronger condition that differentiates an 
hazard-free circuit implementation from speed-independent circuit behavior. 
We have developed a polynomial-time algorithm to construct a semi­
modular signal transition graph with the weakest conditions (insuring fastest 
operation) from a guarded command specification. Examples will be shown 
in the next subsection. 

The second step in the synthesis procedure is to convert this semi-modular 
graph to a state diagram. It can be shown that the semi-modular signal tran­
sition graph derived from a guarded command guarantees the existence of a 
consistent state assignment for every state. According to the state diagram, 
standard Boolean minimization can be used to derive a Boolean expression 
for each output signal. The resulting circuit is guaranteed to be deadlock­
free, hazard-free, and allows maximum possible concurrency from its signal 
transition specification. 

2.3. Synthesis Circuit Examples 
A reasonable specification of the pipeline interconnection circuit shown in 
figure 3 can be given as 

* [RJ -+ Ro'tt ], (I) 

meaning that if the input sample is ready (RJ), then start computation 
(Ro'tt). The requirement that the output register must be empty (A;;) before 
a new datum can be accepted is reflected in the four-phase handshake transi­
tions A;; -+ Ro'tt. 
The circuit synthesized from the specification of (1) is shown in figure 4, in 
which a two-input C-element implements the Boolean function C = 
AB +BC' +AC' , where A and B are the input signals, C' is the previous 
output signal, and C is the current output signal [8]. The C-element has the 
property that the output signal will change to the input level only when both 
inputs are of the same level; otherwise the output stays unchanged. 



www.manaraa.com

'r---_---+ RoUl 

~------~---Am 

Figure 4. logic implementation of the pipeline interconnection circuit 
specified by * [R;! ~ Rot,]. Of all the circuits that behave correctly ac­
cording to the specification, this circuit has the shortest response time. 

201 

The efficiency of hardware utilization resulted from the use of an intercon­
nection circuit can be derived from its semi-modular signal transition graph. 
It can be shown that the specification of (1) allows only alternate computa­
tion blocks to compute at the same time, achieving at most a 50% hardware 
utilization [1]. We call this pipeline scheme the half-handshake. 

Another possible specification of a pipeline interconnection circuit is 

(2) 

It can be shown that the interconnection circuit derived from this 
specification allows every computation block to compute at the same time 
[1]. We call this pipeline scheme the full-handshake. As an example, the 
signal transition graph shown in figure 5 is the semi-modular graph con­
structed from the specification given in (2), with it logic implementation 
shown in figure 6. Investigating (1) and (2), we do expect the specification 
* [Aott --+ Rott] to give a full-handshake because the precondition is the 
acknowledge signal AOUl , an indication to block A that block B has received 
the output datum from block A. As block B has received its datum, block A 
can proceed with calculating the next datum and of course block B can 
proceed with the present one; therefore both blocks can process data at the 
same time. 

The difference in the two specifications of (1) and (2) demonstrates one of 
the advantages of using high-level specifications for circuit behavior 
description. With a high-level specification, we can exercise reasoning and 
analysis at the circuit behavioral level, rather than directly specifying signal 
transitions where the corresponding circuit performance is difficult to fore­
see. The high level of concurrency is what leads us to use the second 
specification in our synthesis and circuit implementation. 



www.manaraa.com

202 

tRo"tt R/ut 

1 I 
Ai! Ai! 

1 1 
Ro~ R~ 

Ri! 1 Rj~ 1 
Aift Aift 

Figure 5. The weakest semi-modular transition graph constructed from 
the guarded command specification * [Ao"tt -+ Ro"ttl. 

Figure 6. Logic implementation of the pipeline interconnection circuit 
specified by * [Ao"tt -+Ro"ttl. This figure shows that the connection of 
two C-elements and two inverters is the optimal design of a full­
handshake circuit. 

2.4. Library of Interconnection Circuits 
The synthesis procedure when coupled with computation modules which 
provide completion signals can be used to design a wide variety of circuits 
covering most signal processing applications. All the circuits shown in this 
subsection were synthesized and verified [22] to be hazard-free. 

A. Sequential Interconnection Circuit: 

(3) 

where a sequential guarded command construct is used to indicate that only 
after block B has completed its task can block A accept a new datum. 



www.manaraa.com

B. Multiple-Input Pipeline Circuit with Two Input Sources: 

* [Ao"tt 1 (") Ao"tt2 ~ Ro"tt ], 

203 

(4) 

where Ao"tt 1 and Ao"tt2 are ANDed in the precondition to describe that only 
after both of the input data are valid, can the next block start computation 
(Ro"tt ). 

C. Multiple-Output Pipeline Circuit with Two Output Destinations: 

* [Ao"tt ~ Ro"tt 1 ,Ro"tt2 ], 

where Ro"tt 1 and R/w2 are to be performed concurrently. 

D. Multiplexer Pipeline Circuit with Two Input Sources 

(5) 

* [(Aott 1 (") C;% (") T) U (A ott 2 (") C{~ (") T) ~ Rott ], (6) 

where Cjn is the request signal from the controller to indicate when the con­
trol signal T is valid, and T is to select one of the two input data to be 
transferred. Aott 1, Aott2' and C;% are specified in the precondition to insure 
that no operation can be performed until the control signal T and the 
selected datum are valid at the multiplexer input and that the full-handshake 
circuit is used. 

E. Demultiplexer Pipeline Circuit with Two Output Destinations: 

* [Aott (") CJ (") T ~ Rott 1 I Ao"tt (") Cj~ (") f ~ Rott2], (7) 

where T is the control signal to select one of the output blocks. In this 
specification, the datum from the input block (Aott L will be transferred to 
block 1 (Ro"tt 1 ) if T is high and to block 2 (Ro"tt 2) if T is high. Ao"tt and C J 
are specified in the preconditions for the same reason as in a multiplexer. 

The synthesized logic implementations of these interconnection circuits are 
shown in figure 7. 

3. DESIGN CONSIDERATIONS 

One important feature of asynchronous parallel architectures is that they 
allow the same intrinsic concurrency as data flow machines do. Asynchro­
nous design also gives better perfonnance than comparable synchronous 
design in situations for which global synchronization with a high speed 
clock becomes a limiting factor to the system throughput. In parallel archi­
tectures using synchronous interconnect, the throughput of the system can 
be limited by the global constraint of clock distribution, which in turn limits 
the physical size of the system. the clock rate, or both. If a parallel architec­
ture has only localized forward-only interconnection, full pipelining in 
which the communication paths between chips constitute pipeline stages can 



www.manaraa.com

204 

RiA __ ---! 
/--------.- ROlli 

'-----------+ ....... A;II 

A~~~-+ __________ ~ 

(a) Sequential Interconnection Circuit 

AOllll------t=== __ -+~----~ 
RiA 2 

AoIII:z------' 

(b) Two-Input Pipeline Interconnection Circuit 

'---------i---c====~--~AiAl 
A~ ~~--------~ __ ~ 

l--..-_R~2 

~-------------t====~--~AiA2 

(c) Two-Output Pipeline Interconnection Circuit 

Figure 7. Logic implementations of various interconnection circuits 
(continued). 

be used and asynchronous interconnect will eliminate the global constraints 
on the physical size of the system. Consequently the architecture can truly 
achieve the throughput consistent with input/output rate limitations (such as 
the speed of NO converters). 



www.manaraa.com

T 

Aoutl---+--~~t-t-::l"""'" 

Cm-~_r---~~ 

Cout ------:±±±::::;=,,-::::::---t------' 

Aout~-----~ 

(d) Two-input Multiplexer Interconnection Circuit 

T 

Ci" 

Cout 

Rill 

Aout 

Rout 1 

Ai"l 

Rout2 

'+-------+---<1 AiII2 

(e) Two-Output Demultiplexer Interconnection Circuit 

Figure 7. Logic implementations of various interconnection circuits. 

205 

The ability to decouple the timing considerations from the design of compu­
tation modules makes the asynchronous approach particularly attractive in 
reducing design effort when implementing parallel architectures. In a 
modular design approach. the basic computation modules (parameterized 
macro cells) that have been designed for one system. such as multipliers. 
shifters. selectors. etc .• can be readily used in other systems as well. Old 
computation modules can be replaced by new ones without modifying the 



www.manaraa.com

206 

original system, since asynchronous interconnect guarantees the correctness 
of operations without timing assumptions on individual modules. In this 
section, we will describe some basic properties of asynchronous modules 
and their design considerations with emphasis on the performance issues. 

3.1. Properties of Asynchronous Modules 
DCVSL computation modules use the so-called dual-rail [23] coded sig­
nals inside the logic, which compute both the data signal and its comple­
ment. Since both rising and falling transitions have to be completed before 
the completion signal can go high, if there is no carry-chain in the design, 
DCVSL computation modules usually give the same worst-case computa­
tion delay independent of input data patterns. This lack of data dependency 
to the first order is actually an advantage for real-time signal processing, 
since the worst case computation delay can be easily determined. 

Once an asynchronous processor has been designed, there is no way to slow 
down the internal computation. The throughput can be controlled by issuing 
the request signal at a certain rate, but the computation within the processor 
is performed at the full speed. This property has an impact on testing: 
unlike synchronous circuits, we cannot slow down the circuitry to make it 
work. with a slower clock. 

In asynchronous design it is tempting to introduce shortcuts that improve 
performance at the expense of speed-independence. However, these 
shortcuts necessitate extensive timing simulations to verify correctness 
under varying conditions. To minimize design complexity we therefore 
generally stayed true to the speed independence design, with the result that 
timing simulations were required only to predict performance and not to 
verify correctness. 

We require that an interconnection module be speed-independent; i.e., the 
circuit's behavior is independent of the relative gate delays among all the 
physical elements in the circuit. Since the synthesis procedure uses a deter­
ministic algorithm to maximize circuit concurrency and minimize Boolean 
expressions, the interconnection circuits synthesized usually require much 
less hardware complexity than those synthesized from a collection of com­
piled modules [18,24]. However, the time-delay overhead incurred by the 
circuit delays cannot be ignored, and will be discussed in Section 4.3 as part 
of the system performance evaluation. 

3.2. Speed-Independence 
For the convenience of our discussion here, the connection of a full­
handshake circuit to its pipeline register is shown in figure 8. The 
handshake circuit uses the rising edge of output acknowledge signal Aout to 



www.manaraa.com

207 

Completion 
Signal Reques 

Signal 
Rout 

Computation 

Block 
Completion Signal 

Figure 8. The connection between the pipeline register, the pipeline 
handshake circuit, and computation modules. 

control register latching. Now we take a closer look at the latch. The regis­
ter shown in figure 8 is an edge-triggered latch. The reason that an edge­
triggered latch is needed instead of a level-triggered one is for fast ack­
nowledge signal feedback. Notice that in figure 8, Rout (request signal) is 
fedback to the first C-element without waiting for the completion of the 
computation module connected to it If a level-triggered latch were used, 
the feedback signal to the first C-element will have to wait for the comple­
tion of the succeeding computation module to prevent an early precharge of 
its input data [25]. It can be easily verified that if a feedback signal is gen­
erated after the completion of the succeeding block, the handshake circuit 
would enforce that only alternate blocks can compute at the same time and 
that the hardware utilization is reduced to at most 50%. An edge-triggered 
latch does not constitute a practical problem in our design since it is strictly 
a local operation. The latch can be designed such that the operation is not 
sensitive to the slope of the triggering signal. 

In order to insure the speed-independence of the latching operation, a com­
pletion detection for register latching is shown in figure 9. The logic com­
pares the register input and output data bits. If the latching signal is high 
and the input and output data bits are identical, the completion signal goes 
high. During the reset cycle, a low on the latching signal will immediately 
reset the completion signal and therefore incurs only a short delay for reset­
ting. After the data bits have been latched and stable, the completion signal 
from the register is fed forward as an input to the second C-element. We 
could match the delays of register latching and the second C-element to gain 
some perfonnance improvement. However, simulation showed that any 
attempts at gate delay matching proved to be unreliable, and thus we chose 



www.manaraa.com

208 

latching signal 

reg in [0] _--r--..... 
reg=out[O] 
reg in [1] _--r--..... 
reg-out [1 ~-----1 complete 

Figure 9. The completion detection mechanism for register latching. 
The logic compares the register input and output data bits. If the latch­
ing signal is high and the input and output data bits are identical. the 
completion signal goes high. 

to stay true with a speed-independent design. 

The data latching mechanism shown in figure 8 is gate-delay-insensitive 
(speed-independent) but not wire-delay-insensitive, as the wire delays 01 
data lines may be different from that of the request signal Rill. If the request 
signal and data lines do not match in wire delays, differential pairs of data 
lines, or coded data lines, will have to be transmitted and the completion 
signal Rill can be generated locally at the input to the C-element. 

3.3. A Self-Timed Array Multiplier 
In this subsection we describe the design of a self-timed array multiplier to 
illustrate the performance considerations often encountered in designing 
DCVSL computation modules and the solutions to these problems. 

3.3.1. Architecture of the Multiplier 

A multiplication in most signal processing applications is usually followed 
by an accumulation operation, and the final addition in the multiplication 
can be combined with the accumulation to save the delay time of one carry­
propagate add. As shown in figure 10, the multiplier core outputs two par­
tial products to be added in the succeeding accumulate-adder, which con­
sists of one carry-save add and one final carry-propagate add. The multi­
plier core is composed of three basic cells: registers, Booth encoders [26], 
and carry-save adders. Eight partial products are computed and added using 
a modified Wallace tree structure [27]. The architecture of the multiplier 
core shown in figure 10 consists of eight Booth encoders operating con­
currently and six carry-save adders with four of them operating sequentially. 
The inv signals from encoders to carry-save adders implement the plus-one 
operation in a two's complement representation of a negative number. The 



www.manaraa.com

J 
Encoder 1 Encoder 2 

~ Encoder 3 Encoder 4 

Encoder 5 Encoder 6 ~ 

Carry-save adder 1 Carry-save adder 2 

Encoder 7 EncoderS f-

Carry-save adder 3 Carry-save adder 4 

-rT 

H inv 

Carry-save adder 5 

{~ H inv 

Carry-save adder 6 

U U 

Figure 10. The architecture of the multiplier core, which consists of 
eight Booth encoders operating concurrently and six carry-save adders 
with four of them operating sequentially. 

209 

multiplier core occupies a silicon area of 2.7mmx3mm in a 1.6J.1m CMOS 
design, and a computational latency of 40 ns was estimated from simulation 
using irsim [28] with the 1.6J.1m CMOS parameters. The test results of the 
design will be given in the next section. 

To increase the system throughput, a pipeline stage was added between the 
multiplier core and the accumulate-adder. We could have deep-pipelined 
the multiplier core as well; however, since the computational delay of the 
multiplier core has been reduced to only one Booth encoding plus four 
carry-save adds for 16-bit data, the hardware and delay-time overhead 
incurred in adding more pipeline stages, such as the circuitry for pipeline 
registers and the delay time for register latching, completion detection, and 
handshake operation, rules out the practicability of having one more stage of 



www.manaraa.com

210 

pipelining within the multiplier core. 

The accumulate-adder consists of a carry-save adder at the front and a 
carry-propagate adder at the end to add three input operands per cycle; two 
of the three operands come from the output partial products of the multiplier 
core, with the third from a second source. The accumulate-adder occupies a 
silicon area of 1.1mmx1mm in a 1.6j.lm CMOS design. A propagation 
delay of 30 ns was estimated by simulation using the 1.6j.lm CMOS param­
eters and the test results will be given in the next section. 

3.3.2. Circuit Design for the Multiplier Core 

The goal in designing the multiplier core was to reduce the DCVSL delay 
by allowing maximal concurrent operation in both precharge and evaluation 
phases. Layout is another important design factor since a Wallace tree 
structure consumes more routing area than sequential adds. Data bits have 
to be shifted two places between each Booth encoder array to be aligned at 
the proper position for addition. Since each data bit is coded in a differen­
tial form, four metal lines (two for the sum and two for the carry) have to be 
shifted two places per array, which constitute on the order of a 40% routing 
area overhead as compared to similar structures in a synchronous design. 
The basic cells used in the multiplier core, modified from a design provided 
by Jacobs & Brodersen [11], will be given in this subsection and the stra­
tegies of minimizing precharge and completion generation delay overhead 
will be discussed. 

The Carry-Save Adder 

As an example of a DCVSL computation module, figure 11 shows the cir­
cuit design of a carry-save adder. Modifications on transistor sizes for better 
driving capability and on the PMOS transistors to precharge every node 
high to prevend charge-sharing were manually tailored for the specific needs 
of this multiplier design. As shown in figure 11, a carry-save adder takes 
three input bits A , B , and C and adds them up to produce two output bits 
CARRY and SUM. Since there is no carry propagate between digits, a 
carry-save adder performs an add·ition in one gate delay. 

Concurrent Precharge 

Even though the five rows of sequential DCVSL gates (one for the Booth 
encoding and the other four for carry-save adds) evaluate data sequentially, 
they can be precharged concurrently. The precharge signal (RoUt) is driven 
through three levels of distributed buffers to drive more than 320 PMOS 
precharge transistors at the same time. When the outputs of the last row of 
the DCVSL gates are reset to low (the inverse of a precharged high), the 
multiplier completion signal will go low, indicating precharge has been 



www.manaraa.com

CARRY 

AB+ BC +AC 
SUM 

Ae Be C 

Figure 11. The circuit schematic of a DCVSL carry-save adder. Every 
internal node is precharged high during the precharge phase to avoid 
the charge sharing problem. A carry-save add consists of two separate 
NMOS trees, a carry tree and a sum tree. 

211 

completed. By using the concurrent precharge scheme, a 16-bit multiplier 
precharge operation can be finished within 6 ns in a 1.6jlm CMOS design. 

Concurrent Request 
We had assumed that when the request is high, the input data to their 
corresponding DCVSL gates must be valid and stable. This assumption is 
violated by a concurrent request since DCVSL gates are connected sequen­
tially within a pipeline stage. For example, when the request is set high, the 
input data to the second row of sequentially connected DCVSL gates, which 
are the outputs of the first row of the DCVSL gates, are definitely not valid 
yet. But since every output bit of DCVSL is reset to low in precharge, it is 
guaranteed that when the request is high at a DCVSL gate, the input bits to 
that gate can only go from low to high, but never from high to low. Since 
DCVSL consists of only NMOS logic trees, input gate voltages going from 
low to high will only increase the conductivity of an NMOS tree but never 
the reverse; therefore the one directional transition property is preserved, 
similar to the operation of Domino dynamic circuits. 



www.manaraa.com

212 

If all the transistors along an NMOS tree are driven high, the output line will 
eventually go high, through an inverter at the top of the NMOS tree, indicat­
ing the completion of the evaluation for that particular tree. Valid data 
travel through multiple DCVSL gates sequentially, but the request signal for 
all the DCVSL gates are set high at the same time. After every differential 
pair of the last row reaches a high at one of the differential output data lines, 
a completion signal for the whole DCVSL block can be generated. The con­
current request scheme takes advantage of the asynchronous nature of cir­
cuit delays in order to obtain the shortest overall computational delay during 
the evaluation phase. Since completion signal generation can be viewed as 
a synchronization point, the number of unnecessary completion detections 
should be minimized. A completion signal is only generated at the output of 
the last row of a DCVSL block. 

Completion Signal Generation 

The completion signal for every output data pair of a DCVSL gate can be 
generated through an OR gate with inputs connected to the differential out­
put data pair. As shown in figure 12, the completion signal for multi-bit 
data can be generated by a C-element tree which detects the completion of 
every data pair. In our design, two-level AND gates were used to detect the 
16 completion signals at the output of a DCVSL gate, based on the assump­
tion that precharge delay is approximately a constant for all data bits. 

Last row 

of 

DCVSL 

Figure 12. The completion detection for a 16-bit DCVSL block. C­
elements can be replaced by simple AND gates it precharge delay is ap­
proximately constant for all data bits. 



www.manaraa.com

213 

To reduce the overhead incurred by completion signal generation, we can 
parallel computation and completion signal generation, using the pipelined 
completion detection scheme [25]. In this scheme, level-triggered latches 
would have been necessary to latch both the primary and complementary 
data pairs. Level-triggered latches will require the acknowledge signal to be 
fedback only after the completion of the succeeding computation block. 
The overall perfonnance gain of using pipelined completion compared to 
the edge-triggered latching mechanism shown in figure 8 will depend on the 
actual circuit functionality. In general, simple iterative computation will 
benefit from using the pipelined completion detection scheme, as the over­
head introduced by low hardware efficiency could be more than compen­
sated by avoiding the delay for completion signal generation. 

Another obvious alternative to the completion signal generation would be to 
look at the NMOS tree which is expected to display the longest delay. This 
scheme usually works fine if there is no carry chain in the computation, as in 
this case each NMOS tree would exhibit the same amount of computational 
delay independent of input data patterns. The tradeoffs between adopting a 
speed-independent design and using a compromised scheme for better per­
fonnance are among the most interesting issues raised for future study. 

3.3.3. Circuit DeSign for the Accumulate-adder 

The accumulate-adder is a much simpler design than the multiplier core 
since only one carry-save adder and one carry-propagate adder are needed. 
Subtraction is realized by an inv bit to control a simple DCVSL tree which 
selects either the primary data or their complements at the output of input 
registers and feeds the selected datum to a row of carry-save adders. The 
outputs of the carry-save adders are fed directly into a row of carry­
propagate adders for computation of one single sum out of three input 
operands. 

A carry-propagate adder is implemented by feeding the carry-bit of a carry­
save adder to one of the three inputs of the next carry-save adder. The con­
current precharge and request plays an important role here; if a sequential 
precharge and request scheme had been used, one 16-bit carry-propagate 
adder would have incurred 16 sequential precharge delays and 16 sequential 
requests and completional detections, which would constitute a total delay 
of more than 200 ns ! 

The relative computational delays as exhibited by this carry-propagate adder 
are rather interesting. The DCVSL carry gate is designed such that the carry 
will go high immediately after two of the input bits (A and B) are high, 
regardless of the level of the third (C). If the carry from the previous 
DCVSL stage is taken as input C to the present DCVSL stage, two 1 's on A 
and B will issue a carry to the next DCVSL stage without waiting for the 



www.manaraa.com

214 

carry from the previous stage, similar to the design of the Manchester carry 
chain. Consequently two 1 's or two O's from the two inputs data at the same 
bit position will cut the carry-chain into two independent chains, which 
means that the two carry chains can then compute concurrently. From the 
viewpoint of data-dependent computational delays, the more the concurrent 
l's and O's the faster the carry-propagate will be. 

4. A VECTORIZED ADAPTIVE LATTICE FILTER 

We chose to demonstrate the ease of designing asynchronous parallel archi­
tectures using the vectorized adaptive lattice filter introduced in [29]. The 
vectorized adaptive filter allows arbitrarily high sampling rates by exploit­
ing unlimited parallelism within the filter algorithm. This allow us to test 
the highest throughput achievable through an asynchronous implementation 
and the effort incurred in designing such a system. 

4.1. The Filter Architecture 
Linear adaptive filtering is a special case of a first-order linear dynamical 
system. The adaptation of a single stage of a lattice filter can be described 
with two equations, the state-update equation 

k(T)=a(T)k(T-l)+b(T) , 

and the output computation 

y(T)=/(k(T),T) , 

(8) 

(9) 

where a (T) and b (T) are read-out (memoryless) functions of the input sig­
nals at time T, and y (T) is a read-out function of both the state k (T) and the 
input signals at time T. Since the computation of y (T) is memoryless, its 
calculation can be pipeline-interleaved [30] and the computation throughput 
can be increased without a theoretical limit. However, the state-update 
represents a recursive calculation which results in an iteration bound on the 
system throughput [31]. In order to relax the iteration bound without chang­
ing the system's dynamical properties, (8) can be written as 

k (T +L-l) = a (T +L-l)a (T +L-2)···a (T + l)a (T)k (T -1) 

+ a (T +L -1)a (T +L-2)"'a (T + l)b (T) + ... 
+a (T +L-l)b (T +L-2)+b (T +L-l) 

= c(T ,L)k(T-l)+d(T ,L) 

(10) 

where c (T, L) and d (T , L) are memoryless functions of past input signals, 
but independent of the state k (T). c (T, L) and d (T , L) can be calculated 
with high throughput using pipelining and parallelism, and the recursion 



www.manaraa.com

e,(3T) e,(3T+l) e,(3T+2) 

o 

eb (3T) eb (3T + 1) eb (3T +2) 

eb(3T+l) 
e,(3T+l) 

Figura 13. An LMS adaptive lattice filter stage with a vector size of 
three. 

215 

k(T+L-l) =c(T,L)k(T-l) +d(T,L) needs only be computed every L 
samples. Therefore the iteration bound is increased by a factor of L. L is 
called the vector size, since a vector of L samples will be processed con­
currently. 

A normalized least-mean-squares (LMS) or stochastic gradient adaptation 
algorithm is chosen for our example because of its simplicity and the 
absence of numerical overflow compared to transversal recursive least­
squares algorithms. A vectorized LMS lattice filter stage with L = 3 is 
shown in figure 13 and the operations that each processor needs to perform 
are shown in figure 14. The derivation of the algorithm for normalized LMS 
lattice filters can be found in [24]. Processors A 1 and A2 jointly calculate 
the c (T, L) and d (T ,L) in (12), processor Bland B 2 calculate the state­
update k(T), and processor C 1 performs the output computation y (T). 



www.manaraa.com

216 

ab 

E'=(1-~)E+el+el 
a = l-~E-l(el+e;) 
b = 2 E-1et eb , c'=ac 
d'=ad+b 

Figure 14. Operations required of each processor shown in figure 13. 

For every processing cycle, a vector of L input samples are processed and a 
vector of L output samples are calculated. Therefore the filter sampling 
rate is L times faster than the processing speed. Since there is no theoretical 
limit to the number of samples allowed in a vector, the filter sampling rate is 
not constrained by the processing speed, but rather it is limited only by the 
I/O bandwidth (such as the speed of NO converters). However, the higher 
sampling rate is achieved at the expenses of additional hardware complexity 
and system latency, and very high sampling rates will require multi-chip 
realizations. For example, at the sampling rate of lOOMHz the computa­
tional requirement is approximately 3 billion operations per second per lat­
tice stage. Since there is no global clock routing at the board level in an 
asynchronous design, pipelined computation hardware can be easily 
extended without any degradation in overall throughput as both the vector 
size and the number oflattice filter stages are increased. 

Our goal is to design a set of chips that can be connected at the board level 
to achieve any sampling rate consistent with I/O limitations. This requires 
the partitioning of a single lattice filter stage into a set of chips which can be 
replicated to achieve any vector size. In this partitioning we attempted to 
minimize the number of different chips that had to be designed, allow 



www.manaraa.com

217 

PEl PE2 

a 

PE4 
a b 

~: Squarer (§): Shifter 
® : Multiplier (9 : 16 bits to 4 bits converter . 

C-Il-o::IIt>O-+-H&>ir+C @.: Adder/Subtracter I : Pipelining Stage o : Multiplexing 

Figure 15. A chip set designed to implement the LMS adaptive lattice 
filter shown in figure 13. The partition was done in such a way that any 
required filter sampling rate can be achieved by replicating these chips 
at the board level without redesign. PE1 and PE4 have built-in 
hardware multiplexers so that the chip function can be controlled by 
external signals to form a reconfigurable datapath. 

flexibility in the vector size (ie. amount of parallelism). and minimize the 
data bandwidth (number of pins) on each chip. 

We found a partitioning that uses five different chips and meets these 
requirements. Block diagrams of four of them are shown in figure 15. and a 
fifth chip simply implements variable-length pipeline stages. Two of the 
four chips (PEl and PE4) have built-in hardware multiplexers so that the 
chip function can be controlled by external signals to form a reconfigurable 
datapath; otherwise eight different chip designs would have been required. 
The same chip set can also be used to construct a lattice LMS joint process 
estimator. These chips can be replicated as required and interconnected at 
the board level to achieve any desired system throughput. 

The parallel architecture of connected computation chips and pipeline stages 
for a vectorized LMS lattice filter with vector size L = 3 is shown in figure 
16. Pipeline registers. indicated by rectangles in figure 16. are the most 
commonly required circuit elements. Since the number of pipeline stages 
preceding different computation chips ranges from 1 to 3 L + 7. one pipeline 



www.manaraa.com

218 

Figure 16. The connection among computation chips and pipeline re­
gisters for a vectorized LMS lattice filter stage with the vector size equal 
to three. 

chip was designed which has a variable length and can be cascaded. 

4.2. A Chip Set for Parallel Adaptive Lattice Filters 

4.2.1. The Pipeline Chip 
In the pipeline chip. each pipeline register is controlled by a pipeline 
handshake circuit and the number of pipeline stages can be specified by 
external signals. This chip contains two chains of pipeline stages where 
each chain can be programmed by external signals to act as a variable-length 
pipeline for up to 16 stages. The chip size is 6.4mmx7.2mm (including 
pads) in a 1.6 J,Jm CMOS design. The estimated delay from pin-in to pin­
out is 30 ns from simulation using the 1.6 J,Jm CMOS parameters. This 
delay is considerable and due to the large capacitance on the common bus 



www.manaraa.com

219 

lines, each of which is connected to seven tri-state buffer diffusions. For­
tunately this delay has no impact on the system throughput, as in an pipe­
lined architecture system throughput is dominated by the pipeline stage with 
the longest delay, which in our case is the multiplier stage. 

4.2.2. The Computation Chips 

The four computation chips shown in figure 15 were designed by connecting 
various computation (multipliers, shifters, etc.) and interconnection (full­
handshake, multiplexing, etc.) macrocells using an automatic place and 
route tool [14]. Here we take chip PE4 as an example as it is the most com­
plicated one among the four. 

PE4 performs three different calculations depending on how the multi­
plexers are configured by external signals. The multiplexers were designed 
such that both the feed-forward request signals and the feedback ack­
nowledge signals are properly selected. Run-time penalty is paid for having 
these multiplexing operations, but three different chips would have been 
necessary if multiplexers were not used. Since the processing cycle time is 
determined by the feedback loop in PE2, the multiplexing overhead as intro­
duced here will not degrade the overall system performance. PE4 occupies 
a silicon area of 7.6mmx7.6mm (including pads) with 33.2K transistors 
using a 1.6J.1m CMOS design. 

4.2.3. Testing Circuitry 

Scan-path registers can replace pipeline registers for testing purposes. By 
holding interconnection signals in a steady state, test vectors can be shifted 
in and out of scan-path registers within asynchronous processors as is typi­
cally done in synchronous testing, and the internal states of an asynchronous 
processor can be both observable and controllable. 

In the pipeline chip, the output data bits at every pipeline stage is observable 
through external control; therefore no testing circuitry is necessary. 

In the computation chips, since we designed DCVSL computation modules 
with registers combined in the layout to save chip area, adding extra scan­
path registers into the datapath would complicate the floor plan and increase 
the run-time delay. Instead we connected internal completion signals to 
pinouts for testing purposes, because these signals are derived directly from 
DCVSL output data lines. If a fabrication error happened along the data­
path, some completion signal would stay low as DCVSL outputs are dual­
rail coded. The DCVSL macrocell in which the error resides can thus be 
identified. Functional errors, if any, can be caught through input test vec­
tors. 



www.manaraa.com

220 

5. PERFORMANCE EVALUATIONS 

This section will give the measured perfonnance of the chip set and describe 
their assembly onto circuit boards using asynchronous interconnect 

5.1. The Chip Set 
The chip set was fabricated through MOSIS in 1.6J.1171 CMOS technology 
and tested using the Tektronic DAS9100. The test results are summerized 
in table 2. The computational delay for the 16x16-bit multiplier (two output 
partial products) and the 16-bit accumulator (three input operands) are com­
parable to their synchronous counterparts. However, substantial overhead, 
compared to perfect synchronous design, is paid for the asynchronous 
design in the handshake delay, precharge, and completion signal generation. 

Handshake delays are on the order of a couple gate delays. Delays for 
precharge and completion detection are usually a function of the data bit 
width. In our design, since we follow the strictest speed-independent rule, 
the operations of precharge, handshake, computation, and completion detec­
tion are processed sequentially. Even under this extreme conservative con­
dition the processing rate can be as high as 16Mhz for one 16x16 multipli­
cation. 

The feasibility of designing asynchronous circuits with higher perfonnance 
than their synchronous counterparts at the chip level is an issue of current 
debate. To answer this question, more investigation has to be made exploit­
ing all possible parallelism in the asynchronous design regime. For exam­
ple, the delay incurred by completion signal generation can be reduced [32] 
as discussed in the previous section. The work. presented here is the first 
attempt to try to assess the advantages and disadvantages of using asynchro­
nous design for parallel architectures by actually implementing these chips. 

16-bit Macro Multiolier Accum. Re~;ister C-element 
Computation/Set 30ns 20ns 4ns 4ns 
Precharge/Reset 6ns 6ns - 1 ns 
Completion Sig. 8 ns 8 ns - -

Table 2. The test results of the computation chips using DCVSL and 
pipeline handshake circuits. The computation latencies are comparable 
to their synchronous counterparts, but the overhead paid for precharge 
and completion signal generation is substantial. 



www.manaraa.com

221 

As will be discussed in the next subsection, the modular design approach as 
promised by using asynchronous components is expected to give perfor­
mance advantages at the board level, even though an individual chip may 
not function at the same speed as a perfectly matched synchronous chip. 

5.2. Board Level Interconnection 
Systems built using a clock-free approach can be easily extended without 
problems in global synchronization. This is particularly important for our 
vectorized lattice filter application, where we want to use the same chip set 
to achieve a variety of sampling rates (depending on application) at the 
board level. 

In our vectorized lattice filter application, a lower throughput, say as a result 
of asynchronous design or slower technology, can be compensated by a 
larger vector size (more parallelism) for a constant filter sampling rate. The 
total chip count for the computation chips increases linearly with the vector 
size, while the chip count for the pipeline chips increases quadratically. The 
number of chips of each type required for a 100MHz LMS lattice filter stage 
is given in table 3. As one benchmark, for a vector size of 8, 53% of the 
chip count is for pipelining. This overhead is due to the fact that on the 
order of L2 data samples are stored within the system, which is a conse­
quence of trading latency for throughput. 

The large number of chips needed for a vectorized lattice filter was caused 
in part by the fact that the chip set was designed for programmable rates. In 
order to make the filter sampling rate parameterizable at the board level, the 
computation partition was constrained by the three criteria as mentioned in 
Section 4.1, which leads to the chip set and chip counts shown in table 3. If 
the design were targeted on a fixed rate, which will reduce the chip count by 
at least 50%, but the filter sampling rate would then be dependent on the 

Cycle Vector Pipe. PEl PE2 PE3 PE4 Total 
Time Size Chio Counts 
20ns 2 8 2 2 2 7 21 
50ns 5 30 5 2 5 19 61 
80ns 8 55 8 2 8 31 104 
lOOns 10 89 10 2 10 39 150 
200ns 20 221 20 2 20 79 342 

Table 3. A summary of the various numbers of chips required for a 
100MHz LMS lattice filter stage using the chip set in figure 15. Over 
50% of the chip count is dedicated to pipeline registers. 



www.manaraa.com

222 

fabrication process. To accommodate process variations, design that 
exceeds specs is generally adopted, which would increase the design effort, 
and sometimes even the design cost. 

The board level design in which the same chip set is used to achieve dif­
ferent levels of parallelism can be accomplished by an automated netlist 
generation, without worrying about clock distribution, and the desired paral­
lelism can always be achieved with a sufficiently large vector size. Com­
munication latencies at the board and backplane level are not of concern 
because they are included within pipeline stages, and are automatically com­
pensated by the handshaking. Building different systems with varying sam­
pling rates using the chip set and this design approach should therefore 
require little design effort. On the other hand, a lower hardware cost for a 
given sampling rate at the expense of a considerably higher design cost 
could be obtained in current technologies using a synchronous design 
methodology, or even with an asynchronous design dedicated to a given 
rate. 

6. SUMMARY 

In this chapter, the modularity which can be achieved with an asynchronous 
design approach was demonstrated by the presentation of an architecture 
and chip partitioning for an adaptive lattice filter stage with unlimited paral­
lelism. The conservative speed-independent design strategy that we have 
adopted simplifies the design process at the expense of additional hardware 
and time-delay overhead of asynchronous interconnection circuits. 

The relative performance of synchronous and asynchronous design is highly 
technology dependent. At the feature sizes used in our design, a synchro­
nous design would undoubtably have higher throughput at the chip level 
(there will be a crossover at some smaller feature size). However, from the 
perspective of ease of system design and performance at the system level, an 
asynchronous design may be a winner. 

We feel that asynchronous design is a feasible and promising approach to 
future parallel architecture implementation, through the design approach of 
separated computation and interconnection modules and an automated pro­
cedure for synthesizing interconnection circuits from a high level 
specification. By providing a modular design framework in which designers 
can prototype their systems based entirely on local properties without wor­
rying about global variations, we believe that the efforts required in imple­
menting complex parallel architectures can be greatly reduced. What is 
needed in the future is the aggressive pursuit and improvement of both syn­
chronous and asynchronous design methodologies, and· a comparison of 
their performance and design difficulty when applied to common 



www.manaraa.com

223 

applications using common technologies. 

REFERENCES 

1. T. H.-Y. Meng, R. W. Brodersen, and D. G. Messerschrnitt, "Automatic Syn­
thesis of Asynchronous Circuits from High Level Specifications," IEEE 
Trans. on CAD, (November 1989). 

2. D. A. Huffman, "The Synthesis of Sequential Switching Circuits," J. Frank­
lin Institutes 257 pp. 161-190,275-203 (March and April 1954). 

3. S. H. Unger, "Asynchronous Sequential Switching Circuits with Unrestricted 
Input Changes," Trans. on Computers C-20(12) pp. 1437-1444 (Dec. 1971). 

4. S. H. Unger, Asynchronous Sequential Switching Circuits, Wiley­
Interscience, John Wiley & Sons, Inc., New York (1969). 

5. C. L. Seitz, "Self-Timed VLSI Systems," Proc. of the Cal Tech Conference 
on VLSI, (Jan. 1979). 

6. D. E. Muller, "Infinite Sequences and Finite Machines," Proc. 4th Annual 
IEEE Symposium on Switching Circuit Theory and Logical Design S-156 pp. 
9-16 (SeplI963). 

7. A. J. Martin, "The Limitations to Delay-Insensitivity in Asynchronous Cir­
cuits," Proc. of the Sixth MIT Conference in Advanced Research in VLSI, 
pp. 263-278 (May 1990). 

8. R. E. Miller, Switching Theory, John Wiley & Sons, Inc., New York (1965). 

9. C. Mead and L. Conway, Chap. 7, Introduction to VLSI Systems, Addison­
Wesley Publishing Company (1980). 

10. L. G. Heller and W. R. Griffin, "Cascode Voltage Switch Logic: A Differen­
tial CMOS Logic Family," 1984 IEEE ISSCC Digest of Technical Papers, 
(Feb. 1984). 

11. G. M. Jacobs and R. W. Brodersen, "Self-Timed Integrated Circuits for Digi­
tal Signal Processing Applications," VLSI Signal Processing III, IEEE 
PRESS, (November, 1988). 

12. R. K. Brayton and C. McMullen, "Decomposition and Factorization of 
Boolean Expressions," Proc. IEEE ICAS, (May, 1982). 

13. C. K. Erdelyi, W. R. Griffin, and R. D. Kilmoyer, "Cascode Voltage Switch 
Logic Design," VLSI Design, (October 1984). 

14. T. H.-Y. Meng, R. W. Brodersen, and D. G. Messerschmitt, "Implementation 
of High Sampling Rate Adaptive Filters Using Asynchronous Design Techni­
quess," VLSI Signal Processing III, IEEE PRESS, (November, 1988). 

15. T. A. Chu, "Synthesis of Self-Timed Control Circuits from Graphs: An 
Example," Proc. IEEE 1986ICCD, pp. 565-571 (OclI986). 



www.manaraa.com

224 

16. A. J. Martin, "The Design of a Self-Timed Circuit for Distributed Mutual 
Exclusion," Proc. 1985 Chapel Hill Conference on Very Large Scale 
Integration, pp. 245-283 Computer Science Press, (1985). 

17. J. van de Snepscheut, "Trace Theory and VLSI Design," Lecture Notes on 
Computer Science 200, Springer-Verlag, (1985). 

18. D. Misunas, "Petri Nets and Speed Independent Design," Communications 
of ACM 16(8) pp. 474-481 (Aug. 1973). 

19. E. W. Dijkstra, "Guarded Commands, Nondeterminacy and Formal Deriva­
tion of Programs," Communications of the ACM 18(8) pp. 453-457 (Aug. 
1975). 

20. S. Y. Kung and R. J. Gal-Ezer, "Synchronous versus Asynchronous Compu­
tation in Very Large Scale Integration Array Processors," SPIE, Real Time 
Signal Processing V 341(1982). 

21. D. M. Chapiro, "Globally-Asynchronous Locally-Synchronous Systems," 
Ph.D. Thesis, Stanford University (STAN-CS-I026), (Oct. 1986). 

22. D. L. Dill, Trace Theory for Automatic Hierarchical Verification of Speed­
Independent Circuits, MIT Press (1989). 

23. D. B. Armstrong, A. D. Friedman, and P. R. Manon, "Design of Asynchro­
nous Circuits Assuming Unbounded Gate Delays," IEEE Trans. on Comput­
ers C-18(12)(Dec. 1969). 

24. C.H. van Berkel and R. W 11. Saeijs, M. J. Honig, and D. G. Messerschmitt, 
"Adaptive Filters: Structures, Algorithms, and Applications," Proceedings of 
ICCD 1988, Kluwer Academic Publishers, (1984). 

25. T. E. Williams, M. Horowitz, R. L. Alverson, and T. S. Yang, "A Self-Timed 
Chip for Division," Advanced Research in VLSI, Proc of 1987 Stanford 
Conference, pp. 75-96 (March 1987). 

26. A. D. Booth, "A Signed Binary Multiplication Technique," Q. J. Mech. 
Appl. Math. 4(2) pp. 236-240 (1951). 

27. M. Santoro and M. Horowitz, "A Pipelined Iterative Array Multiplier," 
IEEE ISSCC 88 Digest of Technical Papers, (February, 1988). 

28. M. Horowitz, IRSIM User's Manual, Stanford University, (1988). 

29. T. H.-Y. Meng and D. G. Messerschmitt, "Arbitrarily High Sampling Rate 
Adaptive Filters," IEEE Trans. on ASSP ASSP-3S(4)(ApriI1987). 

30. H.-H. Lu, E. A. Lee, and D. G. Messerschmitt, "Fast Recursive Filtering with 
Multiple Slow Processing Elements," IEEE Trans. on CAS CAS-
32(11)(November, 1985). 

31. M. Renfors and Y. Neuvo, "The Maximum Sampling Rate of Digital Filters 
Under Hardware Speed Constraints," IEEE Trans. on CAS CAS-
28(3)(March, 1981). 

32. T. E. Williams, "An Overhead-free Self-timed Division Chip," Stanford 
Technical Report, (August 1990). 



www.manaraa.com

9 
Implementation or Multilayer Neural Networks on 

Parallel Programmable Digital Computers 

Soheil Shams and K. Wojtek Przytula 

Hughes Research Laboratories 
Malibu, California 90265 

ABSTRACT 

Neural networks are an attractive new technology for signal 
processing applications, due to their adaptive, self-organizing, 
fault tolerant, and non-linear capabilities. An example of such 
an application, which is used to illustrate the results of the 

paper, involves a use of a multilayer perceptron network with 
error back-propagation learning for underwater target detection 
by means of a sound spectrogram analysis. The paper presents 

a method of implementing neural networks on parallel, 
programmable computers, which can effectively address the 
computational requirements of such signal processing 

applications. The method is applicable to multilayer 
connectionist networks and two-dimensional, SIMD (single­
instruction multiple data stream) processor arrays. A detailed 
description along with comparisons to previously proposed 
methods is provided for a mapping of a multilayer perceptron 
network with back-propagation learning algorithm. The 

mapping includes partitioning of inputs larger than the 
processor array. The performance of the method is evaluated 
using the Nettalk neural network and is compared to that of 
other methods. In particular, it is shown that the 
implementation of the method on the Systolic/Cellular 
machine of Hughes results in the processing rate equal to 100 
MCPS. 



www.manaraa.com

226 

I. INTRODUCTION 

Neural networks, due to their adaptive, self-organizing, fault tolerant, and 

non-linear capabilities, are emerging as an attractive technology for a variety of 

signal processing applications, such as image and data compression (Iwata, 

Nagasaka et al. 1989; Luttrell 1989), communications (paris, Orsak et al. 1989), 

radar target detection (Ahalt, Garber et al. 1989; Kwan and Lee 1989; Roth 

1989), and sonar target detection (Gorman and Sejnowski 1988; Malkoff 1990). 

A specific example is our research on applying the back-propagation neural 

network (Rumelhart, Hinton et al. 1986) to sonar signal processing. In this 

application a sound spectrogram (Urick 1983) is used as the input to the neural 

network. The spectrogram is a three dimensional representation with one axis 

denoting time, one denoting frequency and the last axis denoting the underwater 
acoustic energy received by the hydrophone. The input pattern supplied to the 

neural network is constructed by extracting a small window of data from the 

spectrogram and performing application specific preprocessing on the data, see 

Figure 1. The output of the neural network represents the classification of the 

input pattern into one of the three categories : Target, non-target, or noise. The 

neural network model used in this application is a structured multilayer 

perceptron network with error back-propagation learning (Rumelhart, Hinton et 

al. 1986). The network is trained by repeated presentation of a training set with 

each training pattern being identified by a supervisor of being a target, non­

target, or noise sample. The network learns by creating an internal 

representation for discriminating features in the training set through 

minimization of the mean squared error between its output and the correct 

response, supplied by the supervisor, to a given input training pattern. The sheer 

size of the spectrogram data and the training set size can drastically limit the 

practical use of this system on a conventional computer. The need for high 

throughput flexible architectures is apparent for implementations of neural 
networks for realistic applications. 

Implementations of neural networks known in the literature span a full 

spectrum from software implementations on general purpose computers to 

strictly special-purpose hardware implementations. The software 
implementations are characterized by maximal flexibility but often inadequate 

processing speeds. The special-purpose hardware solutions, on the other hand, 



www.manaraa.com

227 

provide superior throughput at the cost of minimal flexibility. Implementations 
on programmable parallel machines, discussed in the paper, constitute a 

compromise between these two extremes. The architectures of these machines 
reflect better the structure of neural networks than those of sequential machines, 
and the available programmability provides the needed flexibility for efficient 

implementation of various neural network models on the same platform. 

Freq. --.... _ 

Figure 1 - Structure of a sonar target detection system utilizing neural 
networks 

Neural network research is in its early stages of development and most of 
the progress is accomplished by means of experimental, rather than analytical 
studies. This fact has created a need for efficient and flexible implementations of 
these networks. Because of high cost of hardware design and prototyping, it may 
be impossible or impractical to develop new special-purpose devices each time 

existing models of neural networks are modified or entirely new models are 

introduced. Thus the programmability of hardware for neural networlcs may prove 
to be essential. 

Among the existing and well understood parallel architectures, two­
dimensional, mesh-connected, SIMO processor arrays stand out as a very natural 
class of machines for neural network implementations. The SIMO paradigm 
makes it possible to put together a very large number of processing elements 
without complicating the operating system or the programing of the machine. 
Moreover, the processing elements may be very simple, as the control and most 
of the memory management functions are performed by a shared, single 
controller. Parallel SIMO machines are also the best understood class of parallel 
machines. Many of them have been build and tested in laboratories (Little and 



www.manaraa.com

228 

Grinberg 1988; Przytula and Nash 1987) and some have been developed as 
commercial products, e.g. Connection Machine (Hillis 1985) and DAP 

(Reddaway 1973). In this paper, we will focus our attention on implementation 
of neural networks on fine to medium grain SIMD arrays with mesh-connected 

processing units - i.e. each processor is connected to its four nearest neighbors. 

We assume also that the arrays have wraparound connections, but our mapping 

method can be easily modified to apply to the meshes without wraparounds. 

In the context of this paper, the term mapping of an algorithm onto a 

parallel architecture is used to describe a method of fmding a parallel version of 
the algorithm, here a neural network algorithm, and its realization on a parallel 
architecture. The mapping method has to take into account the following 

characteristics of the target architecture: topology of the processing array, 
granularity of the system, local memory size, communication vs. computation 

bandwidths, data formats, and computational capabilities of the processing unit 

(e.g. ALU or hardwired functional units). 

The mapping method can be derived in two ways: automatic and heuristic. 
Automatic mapping is done by means of software tools, which take as input a 

given algorithm and an architecture description, and derive, often in an interactive 

way, the mapping of the algorithm onto the architecture. This approach was used 

to generate a mapping of neural networks onto a parallel architecture described in 

(Kung and Hwang 1989). Our mapping method as well as that in (Blelloch and 

Rosenberg 1987) and (Pomerleau, Gusciora et al. 1988) was produced 

heuristically, i.e. by trial and error, based on understanding of the algorithm and 

the architecture. This approach is usually more time consuming but often leads 

to a more efficient implementation. 

In the derivation of the mapping, the target architecture may be specified 
only in general terms, so that the resulting mapping method is applicable to a 
class of machines rather than a single machine (Kung and Hwang 1989). A 
mapping method designed for a specific target machine, on the other hand, takes 

maximal advantage of its specific features but may not be very useful for other 
machines, even from the same class. Our approach has been to develop a general 
mapping for a class of mesh connected SIMD machines and to verify its 

performance on one example machine from that class, i.e. the Systolic/Cellular 
coprocessor recently completed at Hughes research laboratories (Przytula 1989; 
Przytula and Nash 1987). 



www.manaraa.com

229 

The mapping method described in the paper is general also in the sense that 
it can be used for various classes of neural network models. In particular, the 

method is applicable to all the layered models in which operations can be 
represented as product of matrices and vectors, inner product of vectors, and 

arbitrary local operations. Where by local operations we mean operations which 

can be performed in unison in neurons or synapses without data transfers 

between them, such as calculation of the output transfer function. For more 

details regarding the characterization of neural network models from this point of 

view see (Kung and Hwang 1989). Our paper provides details for mapping of 

only the multilayer perceptron with back-propagation learning. This mapping, 

however, covers all the basic vector and local operations mentioned earlier. This 

is illustrated by observing that the recall phase of the multilayer perceptron 

involves matrix times vector and local operations, whereas the back-propagation 

learning is based on vector times matrix, inner product of vectors plus some 

local operations. 

The paper consists of four sections. This introductory section is followed by 

a discussion of previous work by others in mapping neural networks onto 

programmable parallel architectures in section 2. A description of our mapping 

method is given in section 3. The details on the implementation of the Nettalk 

neural network (Sejnowski and Rosenberg 1987) on the Systolic/Cellular 

machine, using our mapping method, along with performance comparison to 

other implementations are presented in section 4. Finally, the conclusions are 

gathered in section 5. 

II. OTHER MAPPINGS 

Several different mapping methods have been proposed for mapping neural 

networks onto programmable parallel architectures. These methods can be 

roughly categorized into two groups, one for mappings onto specific parallel 
machines (fixed target architecture) and the other for mappings onto 

special-purpose architectures (i.e. customized target architecture). Several 

mappings of neural networks onto specific target machines have been described 

in the literature (Blelloch and Rosenberg 1987; Deprit 1989; Forrest, Roweth et 

al. 1987; Pomerleau, Gusciora et al. 1988; Witbrock and Zagha 1989). One such 

mapping is that of the multilayer perceptron with back-propagation learning 

onto the Warp machine of Carnegie Mellon University (pomerleau, Gusciora et 



www.manaraa.com

230 

al. 1988). The Warp computer is a coarse grain, one dimensional, systolic, 

SIMD machine consisting of 10 powerful processors. The mapping requires 

processing of a complete network on each processor to utilize efficiently the 

processor's large local memory and computational power. In essence this 

mapping does not break up a single task (a neural network in this case) for 

parallel processing, rather it implements multiple independent networks 

concurrently. During the learning phase, the weights are updated in a batch 

mode (Rumelhart, Hinton et al. 1986), i.e. the updates are not done for each 

separate input pattern, but a sum of weight modifications corresponding to a 

batch of input patterns is applied. 

Another interesting mapping onto a specific machine is the implementation 

of the Nettalk network on the Connection Machine CMI-16k (Blelloch and 

Rosenberg 1987). The Connection Machine CMI-16k is a fine grain SIMD 

machine consisting of over 16,000 bit serial processors with each processor 

having 64K bits of local memory. In the mapping of the multilayer perceptron 

network on this machine, a single network is distributed across the processors of 

the machine and executed in unison. Every neuron and every connection weight 

in the network is mapped onto a separate processor. The special copy 

instructions of the machine are used for efficient data movement and 

manipulation. The performance of this mapping on the CMI-16k, as well as the 

mapping on the Warp computer, are lower than our mapping onto the 

Systolic/Cellular machine, even though all of these machines have comparable 

throughputs. 

There have also been a number of mappings onto special-purpose 

architectures proposed in the literature (Brown, Garber et al. 1988; Gaudiot, 

Malsburg et al. 1988; Kato, Yoshizawa et al. 1990; Kung and Hwang 1988; 

Kwan and Tsang 1990; Murry, Smith et al. 1989; Piazza, Marchesi et al. 1990). 
These mappings specify the system architecture, computation at each node, and 
the required communication between the nodes in order to implement a specific 

neural network model. The mapping described in (Kung and Hwang 1988), has 

been developed for the multilayer perceptron with back-propagation learning and 
a systolic, two-dimensional, mesh-connected processor array with wrap-around 

connections. In this method, each layer of the neural network is mapped onto a 

single row of the array. Input patterns are entered and processed in the array in a 

pipelined fashion, with the pipeline cycle time being equal to the amount of 

time necessary to process the largest layer of the network. Utilization of machine 



www.manaraa.com

231 

resources may be low for this method in case of a large discrepancy in the length 

of the layers of the network and also when the number of layers is much smaller 

than the number of rows in the processor array. We have evaluated performance 
of this mapping on the Systolic/Cellular machine of Hughes using the Nettalk 
network and it turned out to be much worse than that of our mapping under the 

same circumstances. 

Many mapping methods, utilizing the same type of architecture, also suffer 
from low efficiency when there are discrepancies between the topology and the 

number of neurons in the neural network and the processor array. In particular, 
most mappings do not address the partitioning of the neural network over the 

processing array, which needs to be used when the number of neurons per layer 

exceeds the number of processors in a row of the processing array. 

III. THE MAPPING METHOD 

In comparison to the mappings described above, our mapping method is 
suitable for a large class of neural networks and a class of fme- to medium-grain, 
two-dimensional, mesh-connected, SIMD arrays. However, the method is 

described in detail for the multilayer perceptron network with back-propagation 

learning. The performance of the method is illustrated using the Nettalk neural 
network and the Systolic/Cellular coprocessor in order to allow for comparison 

with other implementations. 

In our method, we assume that several input patterns, as many as there are 

rows of processors in the array, are available and are processed concurrently. This 

assumption is generally valid, especially during the training/learning phase of 

the network, when the complete training set is available before the start of 
processing. A single processor row of the array performs computation for a 

single input pattern as the processing propagates through all the layers of the 
network, see Figure 2. The method deals very effectively with partitioning of 
inputs larger than the processor row size and assures good performance due to the 

data organization and flow through the array. 

In this section we describe the implementation of the data processing in the 
recall and learning phases of the multilayer perceptron (MLP) network with 

back-propagation learning (also called the back-prop model) on a 2-D mesh array 
architecture. The structure of the MLP network consists of several layers of 



www.manaraa.com

232 

neurons, where the first layer is called the input layer, the last is called the 
output layer, and all the layers between the input and output layers are called 

PArrE"'.1 

PATTERNIZ 

PATTERN., 

Figure 2 - Mapping of multiple neural networks onto a 2-D mesh­
connected processor array 

hidden layers. There are no synaptic connections between neurons on the same 
layer, but each neuron is generally connected to all other neurons in the adjacent 

layers. 

The back-prop model operates in two distinct phases, one is the recall phase 
in which the training pattern is presented to the input layer of the network and a 

corresponding output is recalled at the output layer. The other is the learning 
phase in which the network adjusts its synaptic weights in order to minimize the 
error between the recalled pattern and the correct pattern supplied by a supervisor. 

The operations of each neuron in the the network during the recall phase are 
demonstrated in Figure 3, where a denotes the neuron activation value, w denotes 
the synaptic weight value, 8 denotes the neuron threshold value, and! denotes 
the nonlinear neuron activation function. In short, the function of each neuron, 
during the recall phase, is to calculate the weighted sum of all its inputs and 
apply the nonlinear activation function to this sum in order to generate the 
neuron's output value. 

Similarly, the processing involved in the learning phase is depicted in 

Figure 4, where d denotes the error term and f' is the first derivative of the 

neuron activation function. The error terms for neurons on the output layer 
(l =L) are calculated as 

(1) 



www.manaraa.com

Layer 1-1 

Layer i· 

Layer l+1 

II 

U;(l)= 'I.ajfl-l)wij(l-l) + (J;(l) 
i=I 

ai( l)= f(U;(l)) 

Figure 3 - Recall phase (forward pass) processing of neuron i on layer l 
of the multilayer perceptton network model 

233 

where ti denotes the desired output value of neuron i supplied by the supervisor. 

Whereas in the recall phase, the neuron activation values are propagated forward 

in the network, the error values are propagated backwards in the network during 

the learning phase. 

In the remainder of this section we introduce a mapping method for efficient 

implementation of the operations in the recall and learning phases of the 

back-prop model on a 2-D mesh-connected SIMD architecture. For the sake of 
simplicity, let us assume for now that the neural network under consideration 

has the same number of neurons in each layer, and that this number is equal to 

the number of processors in a single row of the processor array. This assumption 

will be dropped later. 

In our method, a different input pattern for the entire neural network is 

mapped onto each row of the processor array, as shown in Figure 2. Thus, each 

row processes data for one complete network starting from the first layer and 
then continuing sequentially for consecutive layers until the outputs are 

obtained. At the beginning of the recall phase, the processors contain, in their 
local memory, the inputs for the network, one input pattern per row and one 

item per processor, see Figure 5. The indices of the three different sets of 



www.manaraa.com

234 

Layer l-l 

J'(Ui(l» 

Layer l • 

Layer l+l 

8i(l) = J'(Ui(I»ACC; 

II 

Acei= l:8 j(l+l)wij(l) 
;'1 • 

wij(l)+-Wii(l)+ '18 t l+1)a,{ I) 

Figure -4 - Learning phase (error back-propagation) processing for 

neuron i on layer l of the multilayer perceptron network 

Figure 5 - Data organization in the processor array during the fIrSt cycle 

of the recall phase. Only processors in the fIrSt row are enabled. 



www.manaraa.com

23S 

inputs/activation values appear as superscripts. subscripts denote different 
neurons in a given layer. and the layer index is given in parentheses. The shaded 
squares represent the processors that are disabled (masked) in the given cycle. 

The different input patterns are transfonned into outputs of the flfSt hidden 
layer of the networks by the processing involving vertical - North to South -
flow of the synaptic weights Wij. and horizontal flow - West to East- of the 
partial sums Ui. A single shift South is followed by a single shift West until 
the partial sums make a full circle. One processing cycle. for the jlh processor. 
consist of the following operations: (1) receiving the weight value Wij from the 
North neighbor and at the same time. sending the weight value Wij received in 
the previous cycle to the South neighbor; (2) receiving the partial sum Ui from 
the West neighbor and at the same time. sending the old Ui to the East neighbor; 
(3) Multiplying the incoming Wij by the aj. which is stored locally. and adding 
it to the incoming Ui. see Figure 6. 

() Wv 1 

u. .(1) , .. G . 

Wij(1 +1) , 

Udl+ 1) --
Udl+ 1)= U,{I)+a jWq(I) 

+1)= will) Wij(1 

Figure 6 - Processing in each processor of the array during the recall 
phase. 

The weight values are organized in a skewed fashion in the global memory. 
This organization is used in order to have the correct weight value Wij and partial 
sum Ui meet in the same processor at the proper time. Figure 7 demonstrates the 
next two iterations following the initial cycle shown in Figure 5. 



www.manaraa.com

236 

(a) 

(b) 

Figure 7 - Next two cycles of the data flow through the array after 
initial cycle shown in Figure 5. 



www.manaraa.com

237 

In this procedure, the vertical flow brings the same weights in contact 
with the different input patterns in the consecutive rows of the array. This is 
possible since the weight values are identical for all the networks in the array. 
Thus two levels of parallelism are achieved: the processing of complete networks 
is performed concurrently in a pipeline mode in the different rows of the 

processor array, and each network is processed in parallel by the different 
processors of each row. Mter all the weight values of a given layer have passed 
through the processor array and the threshold values qi have been added to the 

partial sums U i in each row, the computation of the activation function takes 

place in unison in all the processors. At the completion of this operation the 
activation values a( l) for layer l are available in each processor for computing 
the activation values for the next layer l + 1. Concurrent with the propagation 
of weights through the array, the final U i values in each row are propagated 

through the array and stored in the global memory for later use during the 

learning phase. This process is repeated until the activation values for the 
neurons on the output layer have been evaluated. 

It is apparent from Figures 5 and 7 that the processing of multiple networks 

in the processor array is performed in a pipelined fashion. The organization of 
data in the memory is structured such that the pipeline flushing time is 
overlapped with loading of values for the next operation. This method is 

efficiently used to implement networks larger than the processor array by loading 
and unloading different segments of the network for processing. 

During the learning phase, we also assign the computation of an entire 
network to each row of the processor array. This leads to a similar data flow and 
identical organization, in the array, of the activation and weight values. Thus the 
transition from the recall to the learning does not require data reorganization. The 
activation values 0i along with the accumulated sums Acci and the learning rate 

1] are stored in each processor's local memory, see Figure 8. 

The weights Wij travel from North to South, as before, and the error values 
~i move from West to East. Two sets of weights are being transferred 
concurrently - the old and the new, where the new weights Wij are computed on 

the fly according to the learning (or weight update) formula from Figure 9. The 
old weights Wij are the weight values used during the recall phase. Treating the 

new and the old weights separately in this fashion insures consistency in 



www.manaraa.com

238 

learning between multiple networks executing in different rows of the processing 
anay. 

Figure 8 - Data organization in the processor array during the flfSt cycle 
of the learning phase. Only processors in the flfSt row are enabled. 

8 GJ B .-._8,.(I~+1) 
6,(1 +1) =81. ' ) 

WiJ(H J) =W,(I) 

O),{ 1+1) =0), (I) + 7I<5,(t)aJ 

Figure 9 - Processing in each enabled processor of the array during the 
learning phase. 

The processing produces modified synaptic weights w and the error values d 

for each consecutive layer of the network starting from the output down to the 
input layer. At each cycle the old weight value Wij, received from the North 
port, is multiplied by the error term 8j, received from the West port, and added to 



www.manaraa.com

239 

the partially accwnulated sum Accj in each processor's local memory, see Figure 

9. The error term 8; is also multiplied by the neuron activation value aj and the 

learning rate 7]. both stored in each processor's local memory. to calculate the 
weight modification value. The new weight value Wij. received form the North 

port is Updated by being added the weight modification value just produced in the 

processor. This procedure implements the generalized delta rule learning law (as 

shown in Figure 4). The next two cycles of the data flow following the initial 

cycle of Figure 8 are illustrated in Figure 10. At the completion of updating all 

the weight values between layer l and l + 1. the error term D ( l) for layer l is 

calculated according to 

Ddl) = /,(Udl»Accj for l:F- L (2) 

The accumulated sum ACCi in (2) is calculated concurrently while updating the 

weights. The term /,(Udl» is calculated by receiving the partial sum Udl) 

values from the north port and implementing the /' function in unison all the 

processors. The partial sum values are those that where calculated in the recall 

phase and stored in the global memory for use here in the learning phase. 

The neural networks used in practice have layers of different sizes and often 

contain larger number of neurons than there are processors in a row of a 

processor array (e.g. the sizes of each layer in our sonar target detection network 

are 365, 13, and 3 and the Hughes Systolic/cellular machine has 16 processors 

per row). Therefore, it is essential to address the issue of data partitioning as part 

of the mapping method. The partitioning in our method is implemented in such 

a way that the required local memory of the processors can be very small and 

independent of the neural network size. This is consistent with our assumption 

of fine to medium granularity of the processors as mentioned in the introduction. 

If a given layer is smaller than the rows of the processor array, then some 

of the processors will contain phantom neurons with activation values always 

equal to zero. The processing in this case is not changed except that the weights 

between the real neurons and the phantom ones are set to zero. The layers that 

are larger than the rows of the processor array have to be processed in fragments 

of the size smaller or equal to the row size. The order in which these fragments 

are processed in the recall phase is shown in Figure 11. 



www.manaraa.com

240 

U](l) ui(l) UJ(l) 

w21 w32 w13 
w31 W23 

1 1 
2(1+1) 

(a) 

(b) 

Figure 10 - Next two cycles of the data flow through the array after 
initial cycle shown in Figure 8. Shaded processors are disabled from 
perfonning calculations 



www.manaraa.com

(a) (b) 

(c) 

Figure 11 - Network partitioning for implementation on a "3 x 3" 
processor array 

241 

In this example the processor array size being used is "3 x 3" (similar to 

those in Figures 5 and 8) and there are 7 neurons on layer 1. The activation 

values from the first 3 neurons on layer 1 (a1(1)through a~(l), where i is the 

network index) are initially loaded into the processor array. The processing is 

performed, as described earlier, by propagating through the network the 9 weight 

values corresponding to the connections between neurons a~ (1), a~ ( 1)1IXl 

a~(1)on layer 1 and the neurons a1(2), a~(2), and a~(2) on layer 2, during 

which the partial sum values Ui's will be accumulated. The activation values for 

the next 3 neurons on layer 1 (a~( 1) through a~( 1» are then loaded concurrently 

with the tail end of the processing phase of the last cycle, in a pipelined fashion. 

The next batch of 9 weight values for the connections between neurons a~ (1), 

a~(1), and a~(1)on layer 1 and neurons a~(2), a~(2), and a~(2) on layer 2 are 

then propagated through the processor array as before and the computation of the 



www.manaraa.com

242 

partial sums continues. Finally, the last neuron on layer 1 a~(1) is loaded into 

the networlc and processed 

After all the neurons on layer 1 have been processed in this fashion and the 

threshold values been added to the partial sums, the neuron activation function is 

applied to calculate the activation values of the 3 neurons on layer 2 (a~(2), 

a~(2), and a~(2». If there were more than 3 neurons on layer 2, the activation 

values just calculated for neurons a~(2), a~(2), and a~(2) would be unloaded to 

the global memory and the above process would be repeated to evaluate the 

activation values for the next 3 neurons on this layer. This processing is 
repeated until the activation values for all the neurons on the output layer have 

been calculated. A similar partitioning procedure is used to perform the back­
propagation of the error values through the network (learning phase). In this 

case segmentation starts from the output layer toward the input layer, as oppose 

to the reverse direction in the recall phase. 

The pipelined processing employed in our mapping method allows for 

efficient loading and unloading of activation values from the processor array in 

this partitioning scheme. Since these operations almost completely overlap with 

the emptying and loading of the processing pipeline, only a small overhead 

results from processing the network in small partitions. 

The execution procedure described in this section could be applied to many 

layered feed forward neural networks. Even though our mapping method uses a 
SIMD architecture, the activation functions used for the neurons can vary from 

layer to layer. Moreover, within each layer there is also a limited variability 

possible. For example if a polynomial approximation is being used to compute 

the neuron activation function, different polynomials can be implemented in each 

neuron at the same time by having different coefficients stored in each 
processor's local memory. If the network requires significantly different 
activation functions in the same layer, it can be accomplished by sequentially 

applying the desired functions and disabling/enabling appropriate neurons. Since 
the learning rate h is stored in the local memory of each processor, different 
neurons in the network could, if desired, use different learning rates with no 

effect on the performance of our mapping. 



www.manaraa.com

243 

Neural networks with feedback architectures (such as Bidirectional 
Associative Memory (Kosko 1988) and Hopfield nets (Hopfield and Tank 1985» 
can be implemented with the same type of architecture and style of mapping. 
The basic computation involved in the processing of these networks can be 
represented as matrix and vector calculations. The data organization and 
movement through the array, as in the mapping above, implement these 
operations very efficiently. The cellular operations in the algorithm, such as the 
activation function evaluation, could be changed to any other type of cellular 
operations without any effect on the inter-processor communication. This 
allows for great flexibility in the models that can be implemented with this type 
of mapping. In neural networks with feedback architectures, it might be more 
efficient to keep the synaptic weight values locally within each processor and 
transfer the activation values between the rows of the processing array. Our 
mapping method is most efficient for networks with dense interconnections 
between layers, although it could be used for networks having sparse 
interconnections just as well with a lower utilization factor. Since our mapping 
method takes advantage of the inherent regularity of most neural network 
models, it will not process efficiently neural networks with arbitrary and 
irregular interconnections. 

IV. IMPLEMENTATION DETAILS 

As described earlier, our mapping method is suitable for machines with 
2-dimensional , mesh-connected, SIMD architectures. An example of such a 

machine is the Systolic/Cellular coprocessor designed and developed at the 
Hughes Research Laboratories (przytula 1989; Przytula and Nash 1987). The 
architecture of this machine consists of a 16 by 16 array of processors controlled 
by a single controller in SIMD fashion, see Figure 12. The processors are 
connected to four of their nearest neighbors. Processors on the boundary 
columns are connected with each other through wrap-around connections. Each 
processor contains a small local memory (24 words) and seven 32-bit, fixed­
point, functional units - two multipliers, two adders, a divider, and a comparator, 
which can all compute in parallel. A 2K words dualported data memory is used 
as a data queue. The dualported memory can be accessed in parallel by all the 
processors in the top and bottom rows of the array. 



www.manaraa.com

244 

HOST BUS 
I 

IINlERFACE I 

co PROCESSOR BUS I 
I 

DUAL PORT ARRAY MEMORY 

I 
'-iJ-i :HHH J-i :H Hl-' CON1ROI.LER 

~ 
TO ALL & 

PROCESSORS PROGRAM 

Y~ H)-tH ~H ~;.- MEMORY 
Y~ ~H ~~ 

Y;H )-tH ;H H;H ;H~ Hr' 
Y~ )-tH ~ H;'-' H~ Hr' 

Y:z, H H;H Hr' 
Y;H HH ;H H;H ;H Hr' 
'-I~ 

J-i HH J-i :H :H l-' PROCESSOR ARRAY 
'l-l HH :H "H'l-l ~ 

Figure 12 - System architecture of the Hughes Systolic/Cellular 

Coprocessor 

We have tested our mapping method by implementing the well known 
Nettalk neural network (Sejnowski and Rosenberg 1987) on the 

Systolic/Cellular machine. The Nettalk network is a good example of a working 
neural network, which is large enough to require partitioning for our target 
machine and, as mentioned before, has been used by others to test their 
implementations of neural network mappings (Blelloch and Rosenberg 1987; 
Pomerleau, Gusciora et al. 1988). 

The Nettalk network is a three layer feed-forward model which learns to 

pronounce written English text, through the use of the back-propagation learning 
algorithm. The network receives seven letters as inputs and the task of the 
network is to generate the correct phoneme corresponding to the middle letter. 
The input to the network is through 203 neurons, 7 groups of 29 possible input 



www.manaraa.com

24S 

characters. The hidden layer contains 60 neurons and the output layer contains 29 

neurons. Each layer is fully connected to its neighboring layers which yields a 

total of 13,826 connections in the network. 

In our implementation, there were 16 input patterns executing concurrently -

one per row of the processor array. Two neurons were mapped into a single 

processor to take advantage of the multiple functional units available in each 

processor. It is apparent from the mapping algorithm that there are 
approximately equal number of computation and communication operations. 

For example, the double multiply and the double add instructions were used in a 

single processor to multiply two activation values and their corresponding 
weights together and then add the results to the partial sum values in parallel. 

This system characteristic allows for efficient and simple overlapping of 
computation and communication operations. In our implementation of the 

Nettalk network on the Hughes Systolic/cellular processor, only 26.9% of the 

total processing time was attributed to the communication operations that could 

not be overlapped with computation. 

Additional parallelism was exploited by overlapping computation operations 

with communication operations. For example, a North to South data transfer in 

all 16 processors in a row requires 3 cycles (when accessing global memory), and 

a multiplication operation takes 7 cycles. A multiplication operation was 

initiated in the multiplier and while this operation was being processed, the next 

two operands for the next instruction were fetched from the North processor 

concurrently. 

The implementation of cellular operations, which are executed in unison 

across all the processors in the array, is not specified in our mapping. These 

operations have to be implemented by the most suitable method for a given 

target machine. A major portion of these operations are involves the 

computation of the neuron activation function. The activation function used in 
most back-prop implementations, including Nettalk, is the sigmoid function 

defined as 

1 
f(x) = 1 -x 

+e 
(3) 

In our implementation, this function was realized using the exp(x) function 

which in tum was calculated by means of a range reduction technique (pike 

1968). An alternative approach which may be more attractive for some machines 



www.manaraa.com

246 

is a look-up scheme. This scheme offers fast response (one memory read 
instruction), but has been rejected for implementation on the Hughes 
Systolic/cellular due to its idiosyncrasies. 

Still another method for implementing the sigmoid is through numerical 
approximation. The amount of accuracy required for the approximation is 
dependent on the problem being addressed by the neural network. In our 
implementation the goal was to achieve an approximation with 16 bit accuracy. 
With this amount of accuracy, the approximation range to the sigmoid can be 
limited to between -10.5 and +10.5 and assume constant, 0.0 and 1.0 
respectively, outside this range. 

Several numerical approximations were explored. Since there is no local 
control in the processors of an SIMD machine, piece-wise approximation is not 
possible. Thus, a numerical method for implementing the sigmoid function was 
developed. Through a range reduction technique for calculating the exp(x) 
function, we were able to arrive at an efficient implementation. The total 
number of operations required to calculate the exp(x) is determined to be: 4 
additions, 1 logical, 1 division, 1 shift, and 3 multiplications. To approximate 
the sigmoid function, using equation (3), an additional division and subtraction 
operations are needed. 

In order to improve the execution speed of our implementation, we 
examined the use of other activation functions with similar properties to the 
sigmoid, but requiring fewer operations for evaluation. These functions need to 
be: nonlinear, monotonically increasing, differentiable, and bounded. One such 

function examined was 

f(Z)={::Z' -oo<x~O 
(4) 

O<x<+oo 

This function requires only 1 multiplication, 1 addition, 1 division, and 1 
decision operation. Although it has a relatively more complex flrst derivative 
than the sigmoid, its implementation on the Systolic/cellular coprocessor 
requires only 24.3% of sigmoid cycles for the forward pass (recall phase) and 
59.3% of cycles in the training phase (recall & learning), where both the 
function and its first derivative are used. 



www.manaraa.com

247 

A measure of performance, which is becoming a standard for neural 
networks, is Million Connections Per Second (MCPS). The execution time of a 

complete recall and learning cycle, including all the data loading and unloading 
operations, was used to arrive at a 100 MCPS performance for our 
implementation of Nettalk on the Hughes systolic/cellular system. Considering 
only the recall processing we achieve a 240 MCPS performance with our 
implementation. 

Table 1 combines the comparative results for our mapping method on the 
Systolic/Cellular Coprocessor, with mappings from (Kung and Hwang 1988) 
implemented on the same machine, and two other special purpose 
implementations on parallel machines - Warp (pomerleau, Gusciora et al. 1988), 
and Connection Machine (Blelloch and Rosenberg 1987), and a workstation -
Sun 3/160 with a floating point accelerator as reported in (Blelloch and 
Rosenberg 1987). The minimum local memory requirements for systems other 
than the Hughes systolic/cellular are estimates arrived at under the assumption 
that no loading/unloading operations from an external memory are allowed. The 
performance of the Connection machine implementation was also estimated 
using the performance reported in (Blelloch and Rosenberg 1987) multiplied by 
two to account for expected improvements due to code optimization. The 
implementation on the Warp used 32 bit floating point data with a floating point 

adder and multiplier and an integer ALU. Implementation on the connection 
machine used a two bit serial ALU per processor. The data type used in our 
implementation was 32 bit integer with integer arithmetic functional units. 

SYS/CELL SYS/CELL WARP CMl-16K SUN 3/160 
HRL S.Y.KUNG +F.PA 

PROCESSING 
RATE 100 18 17 7 0.034 

(MCPS ) 

MINIMUM 
LOCAL 10 29 6182 5 MEMORY 14000 

(WORDS) 

Table 1 - Comparison of different implementations of the Nettalk 
neural network based on throughput and local memory size requirements 



www.manaraa.com

248 

The systolic/cellular prototype, used for our implementation of the Netta1k 
neural network, was implemented in older VLSI technology, with an 8MHz 
clock rate, and slow memory. The same machine implemented with current 
technology (Ill CMOS), with 25 MHz clock rate and fast memory devices, could 
achieve speeds of greater than I GCPS. A prototype of such a system is 
currently being developed at the Hughes Research Laboratories. This performance 
could be further improved with the use of easily implementable activation 
functions, such as the one in equation (4). 

V. CONCLUSIONS 

Neural network technology is being effectively applied to many signal 
processing applications. We have presented one such application - a sonar target 
detection system. It was shown that practical realization of such networks 
require a very high computational throughput. At the same time, the 
realizations have to be characterized by significant degree of programmability to 
accommodate the variability in the neural networks models. In this paper we 
have demonstrated a method for efficient mapping of neural network models onto 
programmable parallel machines. With this approach we can achieve performance 
comparable to expensive supercomputers, at much lower cost, and still maintain 

sufficient flexibility. The performance is also not much lower than that of 

strictly special purpose implementations and applies to large range of networks 
of different structure and size. 

In particular, the mapping method is applicable to the feed-forward, 

supervised learning class of neural networks. A large number of neural network 
models fall into this this class. Most of them relay on the same basic neural 
operation but may very in interconnection structure and in some parameters of 
the learning algorithm. Also, some additional terms in the algorithms such as 
inertia (or momentum), although not discussed in detail here, can be easily 
implemented using the same mapping method. This applies to all extra terms 
that depend only on local information and therefore do not require additional data 
transfer steps. 

The mapping method described in the paper is intended for implementation 
on fine or medium grain parallel machines, which are controlled in SIMD mode, 



www.manaraa.com

249 

and consist of processors interconnected into a rectangular mesh. Many of todays 
parallel commercial and experimental computers meet these basic assumptions, 
although they may very significantly in many aspects of implementation. The 
method provides especially good performance for architectures which provide 
sufficiently high I/O bandwidth to balance the computational power of the 

processors. 

To illustrate the performance of the method, we have simulated a specific 
neural network on a selected parallel machine. A natural network of choice is 

Nettalk, which is an example of the multilayer perceptron with error back­
propagation learning and has been used as a benchmark for other mapping 
methods and computers. Our target machine is the Hughes Systolic/Cellular 
Coprocessor. The implementation involved partitioning as the network is larger 
than the processor array. We have achieved performance of 100 MCPs (million 
connections per second) counting both the forward and backward propagation 
cycles. 

The mapping method described in this paper provides capability of achieving 
high throughput by concurrently exploiting several levels of parallelism. The 

top level parallelism is due to the execution of multiple neural networks in 
different rows of the two dimensional processor array. The next level is due to 
processing of small parts of the network in multiple processing units in each 

row of the array. Two exb'a levels of parallelism could be added depending on the 
target computer. In particular, the data transfers between the processors could be 
overlapped with computations, and the computations could be distributed 
between multiple functional units (e.g. multiplier, adder etc) within each of the 
processors. 

For example the Systolic/Cellular Coprocessors provides support for all 

these levels of parallelism with a very good balance between communication and 
computation. Approximately 54% of the processing time is spent on 
computation and 46% on communication. By implementing the mapping 
method with optimal use of multiple functional units and optimal overlap of 
computation and communication, the additional cost of communication can be 
limited to 26%. 

Number of processor in the array is an important factor for the performance 
of the method. Although the method allows us to execute a network of 
arbitrary size on a given processor array, the processing time may be 



www.manaraa.com

250 

unnecessarily large if there is a very big mismatch between the sizes of the 

network and the array. For a small network implemented on a very large machine 

the losses come from presence of many phantom neurons which are disabled 

from processing. A very large network, on the other hand, may require 

partitioning into so many chunks on a small machine, that the loading and 

unloading costs may start dominating the computation. 

We are continuing the work presented in the paper by extending the results 

to other classes of networks, such as recurrent networks. We believe that the 

modifications required in the method to accommodate the new models are going 

to be of a very minor degree. 

REFERENCES 

Ahalt, S. C., F. D. Garber, I. Jouny and A. K. Krishnamurthy. (1989). 
Performance Qf Synthetic Neural Network Classification of Noisy Radar 

.signals. Advances in Neural Information Processing 1. 

Blelloch, G. and C. R. Rosenberg. (1987). Network Learning on the Connection 

Machine. 10th Intern. Joint Conf. on Artificial Intelligence. 323-326. 

Brown, J. R., M. M. Garber and S. F. Venable. (1988). Artificial Neural 

Network on a SIMD Architecture. Symposium on the Frontiers of 

Massively Parallel Computations. 43-47. 

Deprit, E. (1989). "Implementing Recurrent Back-Propagation on the 

Connection Machine." Neural Networks. 2: 295-314. 

Fike, C. T. (1968). Computer Evaluation of Mathematical Functions. Prentice­

Hall. 

Forrest, B. M., D: Roweth, N. Stroud, D. J. Wallace and G. V. Wilson. (1987). 
"Implementing Neural Network Models on Parallel Computers." The 
Compo Jour. 30(5): 413-419. 

Gaudiot, J.-L., C. v. d. Malsburg and S. Shams. (1988). A Data-Flow 

Implementation of a Neurocomputer for Pattern Recognition A1l1llications. 

Areospace Applications of Artificial Intelligence. 



www.manaraa.com

251 

Gorman, R. P. and T. J. Sejnowski. (1988). "Learned Classification of Sonar 

Targets Using a Massively Parallel Network." IEEE Trans. Accou., Speech, 

and Sig. Proc. 36(7): 1135-1140. 

Hillis, W. D. (1985). The Connection Machine. Cambridge MA, MIT Press. 

Hopfield, J. J. and D. W. Tank. (1985). ""Neural" Computation of Decisions in 

Optimization Problems." BioI. Cybern. 52: 141-152. 

Iwata, A., Y. Nagasaka and N. Suzumura. (1989). A Digital Holter Monitoring 

System with Daul3 Layers Neural Networks. International Joint Conference 

on Neural Networks. 2: 69-74. 

Kato, H., H. Yoshizawa, H. Iciki and K. Asakawa. (1990). A Parallel 

Neurocomputer Architecture Towards Billion Connection Updates Per 

~. Inter. Joint Conf. on Neural Networks. 2: 47-50. 

Kosko, B. (1988). "Bidirectional Associative Memories." IEEE Trans. Syst., 

Man, Cybern. 18: 49-60. 

Kung, S. Y. and J. N. Hwang. (1988). Systolic Architectures for Artificial 

Neural Nets. IEEE Inter. Conf. on Neural Networks. 

Kung, S. Y. and J. N. Hwang. (1989). "A Unified Systolic Architecture for 

Artificial Neural Networks." Journal of Parallel and Distributed Computing. 

6: 358-387. 

Kwan, H. K. and C. K. Lee. (1989). Pulse Radar Detection Using a Multi-layer 

Neural Network. Inter. Joint Conf. on Neural Networks. 2: 75-80. 

Kwan, H. K. and P. C. Tsang. (1990). Systolic Implementation of Multi-Layer 

Feed-Forward Neural Network with Back-PrOj?agation Learning Scheme. 

Inter. Joint Conf. on Neural Networks. 2: 155-158. 

Little, M. J. and J. Grinberg. (1988). The 3-D Computer: An Integrated Stack of 
WSI Wafers. Wafer Scale Integration. Boston, Kluwer. 



www.manaraa.com

252 

Luttrell, S. P. (1989). "Image Compression Using a Multilayer Neural 
Network." Pat. Recog. 10: 1-7. 

Malkoff, D. B. (1990). A Neural Network for Real-Time SiKDal Processin". 

Advances in Neural Information Processing 2. 248-255. 

Murry, A. F., A. V. W. Smith and Z. F. Butler. (1989). Bit-Serial Neural 
Networks. Neural Information Processing Systems. 573-587. 

Paris, B.-P., G. Orsak, M. Varanasi and B. Aazhang. (1989). Neural Net 
Receivers in Multiple-Access Communications. Advances in Neural 

Information Processing 1. 272-280. 

Piazza, F., M. Marchesi, G. Orlandi and A. Unicini. (1990). Coarse-Grained 

Processor Array Implementing the Multilayer Neural Network Model. Inter. 

Symp. on Cir. & Sys. 4: 2963-2966. 

Pomerleau, D. A., G. L. Gusciora, D. S. Touretzky and H. T. Kung. (1988). 
Neural Network Simulation at Warp Speed: How We Got 17 Million 
Connections Per Second. IEEE International Confer. on Neural Networks. 

Przytula, K. W. (1989). Systolic/Cellular System. 

Przytula, K. W. and I. G. Nash. (1987). A Special Purpose Coprocessor for 
Signal Processing. 21st Asilomar Conference on Signals, Systems and 

Computers. 

Reddaway, S. F. (1973). DAP - a Distributed Array Processor. 1st Ann. Symp. 

on Computer Architecture. 61-65. 

Roth, M. W. (1989). "Neural Networks for Extraction of Weak Targets in High 
Clutter Environments." IEEE Trans. on Sys., Man, and Cyber. 19(5): 

1210-12-17. 

Rumelhart, D. E., G. E. Hinton and R. I. Williams. (1986). Learning Internal 
Representations by Error Propagation. Parallel Distributed Processin,,: 
E'Wlorations in the Microstructure of Cognition. Cambridge, MIT Press. 



www.manaraa.com

253 

Sejnowski, T. J. and C. R. Rosenberg. (1987). "Parallel Networks that Learn to 

Pronounce English Text." Compo Sys. 1: 145-168. 

Urick, R. J. (1983). Principles of Underwater Sound. McGraw-Hill. 

Witbrock, M. and M. Zagha. (1989). An Implementation of Back-Pro,paKation 
LearnioK on GPll. a Large SIMP Parallel Computer. 



www.manaraa.com

10 
Implementation of Sparse Neural Networks on 

Fixed Size Arrays 1 

Manavendra Misra V. K. Prasanna Kumar 
SAL 344, Dept. of EE-Systems 

University of Southern California 
Los Angeles, CA 90089-0781 

mamisra@pollux.usc.edu 

Abstract 

Recent research in Artificial Neural Networks (ANN's) has shown that ANN's 
will play an important role in solving many signal processing problems. To fully 
capture the potential that this new computational paradigm possesses, ANN 
models will have to be implemented in hardware. Initially, attempts were made 
to simulate ANN's on serial computers. These software simulations were too 
slow to be of any practical significance and it was realized that ANN's will have 
to be implemented on parallel machines that can exploit the parallelism inherent 
in ANN's. In this chapter, we investigate how sparse Neural Networks can be 
implemented on a fixed size mesh of processors. A number of currently available 
machines make available a computing environment based on this architecture 
and this architecture is also amenable to VLSI implementation. We show how 
one iteration of activation value updates for a sparse neural network with n 
neurons and e non-zero connections is simulated on a p x p array of processors 
in O((n + e)/p) time. The efficiency of the algorithm is partly due to the fact 
that preprocessing is done on the connection matrix. This makes the algorithm 
efficient carrying out many iterations of the search phase computation with the 
same connection structure. Although not described here, learning algorithms 
like the Delta rule, which are based on the computation of a weighted sum, can 
also be run using a modified version of the algorithm. 

1 This research was supported in part by the National Science Foundation under 
grant IRI-8905929. 



www.manaraa.com

256 

1 Introduction 

The past few years have seen a resurgence in the field of Neural Networks. 
It has been realized that Neural Networks can provide a viable alternative to 
algorithmic processing for achieving brain like performance in a machine. The 
theory of Neural Networks has shown that Artificial Neural Networks (ANN's) 
can be used effectively in many Signal Processing applications [1, 5, 10,34,38]. 

Papers by John Hopfield in the early part of the eighties epitomized the 
resurgence in the field of Neural Networks. In a series of papers [11, 12], he 
borrowed techniques from Statistical Mechanics to show the power of a concep­
tually simple neural network model which has since been called the Hopfield 
Model in literature. The Hopfield Model consists of very simple processing el­
ements interconnected to each other by weighted links. These neurons form a 
single computational layer with output signals fed back to the same layer. The 
network goes through a series of iterations till it converges on a steady output.. 
Since the early eighties, there have been volumes of work to extend models 
that were developed in the fifties and sixties as well as research to develop new 
models to solve specific problems. The result of this research activity has been 
a series of models based on the neural paradigm which will find applications 
in various fields. Some of these models have theoretically been proved to be 
useful in Signal Processing applications. ANN's have been proposed for pas­
sive transient sonar signal classification, low frequency active acoustic sonar 
signal processing, adaptive beamforming and voice recognition amongst other 
applications [6, 7, 13, 15, 20, 22, 39]. 

A translation of ANN theory into application requires the implementation 
of these models. Initial attempts at implementation consisted of software sim­
ulation of ANN models on serial machines. These simulations further verified 
the usefulness of the models but were too time consuming to be of any major 
practical significance. It was realized by researchers working in this area, that 
the inherent parallelism of ANN's had to be exploited by implementations for 
them to make any significant impact. Parallel digital machines were therefore 
natural target architectures for these implementations. 

The late eighties saw a series of articles describing research on the imple­
mentation of ANN's on parallel digital architectures. In [17, 18], S. Y. Kung 
and J. N. Hwang describe a scheme for designing special purpose systolic ring 
architect.ures to simulate neural nets. By recognizing that neural algorithms 
can be re-written as iterative matrix operations, the authors have been able to 
directly apply well known techniques for mapping iterative matrix algorithms 
onto systolic architectures. This method however, is efficient only for fully con­
nected networks. Simulating sparsely connected networks requires the storing 
of zero weights for all the missing interconnections and unnecessary compu­
tations involving these weights. A considerable amount of space and time is 
thus wasted. Also, the existence of wrap-around connections is an undesirable 
feature of these architectures. 

H. T. Kung et al [16] have simulated feedforward neural networks that em-



www.manaraa.com

257 

ploy the Backpropagation learning algorithm on the CMU Warp. The Warp is 
a programmable systolic machine with 10 powerful PE's and thus provides a 
coarse grain of parallelism. This coarse grain of parallelism makes it difficult 
to completely exploit the parallelism in all but the smallest of neural networks. 
Of the two algorithms described in the paper, the network partitioning scheme 
is inefficient for large networks, while the data partitioning scheme is effective 
during the learning phase but not in the search phase. 

The Connection Machine is seen by many researchers as the perfect 'Neural 
Engine' because of its fine grain architecture. A simulation of multilayer ANN's 
running the Backpropagation learning algorithm on the Connection Machine 
CM-2 is presented in [44] by Zhang et a!. The authors describe how to im­
plement a multiply-accumulate-rotate iteration for a fully connected network, a 
process quite similar to the one described in [17], using the 2-D mesh connec­
tions of the CM-2. 

Misra and Prasanna Kumar [25, 26] have presented algorithms to implement 
ANN's on the Reduced Mesh of Trees (RMOT) architecture. An RMOT of size 
n is an SIMD architecture with n PE's and n 2 memory modules arranged as an 
n x n array. The ith PE has access to memory modules in the ith row and ith 

column through a set of row and column busses. The RMOT is shown to be an 
attractive architecture for implementing ANN's and algorithms are presented 
for implementing fully and sparsely connected single layer networks, as well as 
multilayer networks. An RMOT of size n is shown to perform as well as a n x n 
array of processors for this application. 

Przytula et al [28, 29] describe algorithmic mapping schemes to map ANN 
models onto fine grained SIMD arrays. The implementations apply to connec­
tionist networks of arbitrary topology in which search and learning operations 
can be expressed in terms of matrix and vector computations. The mapping 
methods developed are simple and general enough to be used on a number of 
commercial and existing machines. As a specific instantiation, the mapping 
methodology is shown for the Hughes SCAP machine. 

A number of other researchers have also contributed to this rapidly develop­
ing research field that brings together Parallel Processing and Neural Networks. 
In [4], Scherson et al describe the implementation of neural network algorithms 
on the p3 associative processor. Hammerstrom [8] has designed a digital VLSI 
chip for neural processing. Tomlinson et al [14] have used a different approach 
by using digital pulse trains to simulate biological pulse trains. Ramacher and 
Beichter [31] describe a modular systolic chip for emulating ANN's. Ranka 
et al [33, 32] have developed an ANN simulator for the Connection Machine 
and is working on a distributed implementation of Backpropagation on a LAN. 
Shams and Przytula [37] present a method for mapping multilayer ANN's onto 
2-D SIMD arrays. Tomboulian [40] uses a method developed to route arbi­
trary directed graphs on SIMD architectures to simulate ANN's. Wah and Chu 
[41] describe a mapping methodology for mapping ANN's onto multicomput­
ers. Watanabe et al [42] and Wilson [43] present ways to implement ANN's on 
specific array processors. 



www.manaraa.com

258 

As is evident from the references given above, a number of researchers have 
tried to implement ANN models on arrays of processors. Amongst these, the 
linear array is the simplest. A number of real machines based on this architec­
ture exist and thus, it is important to develop efficient application algorithms 
for this architecture. However, if the application in question requires a large 
amount of data to be transferred between processors, the limited bandwidth of 
communication in the linear array becomes a bottleneck and it becomes impos­
sible to develop efficient algorithms. For such applications, better performance 
can be achieved on an architecture in which the processors are connected in 
the form of a two dimensional mesh. The 2-D mesh provides higher bandwidth 
than the linear array without increasing the complexity of interconnection sig­
nificantly. Thus, it is still possible to implement a mesh connected computer in 
VLSI. 

The implementation of sparse neural networks on parallel machines is one 
such application that requires a large amount of data transfer. In this chapter, 
we show how sparse neural networks can be implemented efficiently on a mesh 
connected computer of fixed size. We use a fixed size processor array of size 
p x p to implement the search phase computations of a sparse ANN. A network 
with n neurons and e non-zero connection weights is implemented on the array 
in O«n + e)/p) time. Each PE has local storage of size O«n + e)/p2). Pre­
processing on the connection weight matrix is necessary to generate an efficient 
data routing strategy. Ideas from Interconnection Networks are used to show 
that this routing can be done in a conflict-free manner. 

The rest of this chapter is organized as follows: Section 2 describes the 
neural models addressed by this chapter. Section 3 describes the issues involved 
in implementing sparse ANN models on processor arrays and then presents a 
description of the target architecture, a 2-D array with p2 processors. Section 4 
describes the algorithms to implement sparse ANN's on the target architecture. 
Section 5 concludes the chapter. 

2 Neural Network Models 

This section describes the biological model of a neuron and then shows how 
its salient computational properties are abstracted to form the computational 
model. A general model that encapsulates the important properties of most 
ANN models is presented. Finally, in the last subsection, a brief insight into the 
learning mechanisms incorporated in ANN's is presented, with special emphasis 
on the Backpropagation Algorithm. 

2.1 Biological Inspiration 

The animal brain is a large conglomeration of very richly interconnected simple 
processing elements called neurons. Typically, the nervous system has about 
1011 neurons, each having an average of 103_104 inputs and outputs giving rise 



www.manaraa.com

Dendrites 

Figure 1: The Biological Model of a Neuron. 

Axonal 

Aborization 

259 

to 1015 interconnections. It is theorized that the immense computing power of 
the brain is a result of the parallel and distributed computing carried out by 
these neurons. 

There is a great variety in the structure of neurons found in the nervous 
system and if looked at microscopically, neurons can be very complex. The 
biological model of the neuron however, captures all the salient features of a 
real neuron in a simple model (Figure 1). Dendrites form the input channels 
of a neuron while the axon forms the output channel. Axons of other neu­
rons impinge upon the dendrites of a neuron through junctions called synapses. 
Synapses can be either excitatory or inhibitory and have weights associated 
with them. Signals are passed electrically through axons and then are trans­
mitted chemically across synapses. A weighted sum of all the signals being 
received by a neuron's dendritic structure is formed at the cell body and this 
determines the membrane potential of that cell. The output of a neuron is a 
train of pulses sent out on the axon. The magnitude of these pulses remains 



www.manaraa.com

260 

all 

Figure 2: The McCulloch-Pitts Neuron 

constant and information is conveyed in the firing rate of the neuron. A con­
tinuous monotonically non-decreasing function relates the membrane potential 
to the firing rate of the neuron. 

2.2 Model of the Neuron 

The computational model of the neuron used in ANN's is an abstraction of the 
characteristic properties of the biological neuron. The earliest neural model was 
developed in the 1940's by McCulloch and Pitts (Figure 2). 

The McCulloch-Pitts Neuron [23] is a simple two state device. It forms a 
weighted sum of its inputs and yields a binary output depending on whether 



www.manaraa.com

261 

the weighted sum is greater than or less than a threshold 8. 

a; = 1 
n 

1 if L: w;jaj > 8; 
j=1 (1) n 

0 if L: w;jaj < 8; 
j=1 

where ai is the activation of the ith neuron, Wij is the weight of the connec­
tion from neuron j to neuron i and 8; is the threshold of the ith neuron. To 
mimic the biological model more closely, this transfer function could be replaced 
by a continuous, monotonically non-decreasing function which better matches 
biological data. One such function that is often used is the Sigmoid function: 

S(x) _ 1 
- 1 + e- CX 

(2) 

where c is a constant. Neurons with continuous transfer functions are called 
Graded Response Neurons [12J. 

2.3 The General Model 

A number of ANN models have been proposed in literature [21J. These models 
can be differentiated on the basis of: 

• Whether the network is a single or a multilayer network. 

• Whether it is a feedforward network or it has feedback. 

• Whether the network incorporates learning 1 or not. 

The computations involved in most ANN models however, conform to a com­
mon form. The neural networks addressed here adhere to the following general 
model. A neural network consists of interconnected simple neurons. The input 
signals received by a neuron are multiplied by appropriate weights and summed 
to yield the overall input to the neuron. The output of the neuron is produced 
by applying a function f, called the activation function, to the weighted sum. 

The update step can be formally described as 

(3) 

The neurons in the network could form a single layer with feedback connec­
tions or could form the input, output and hidden layers of a multilayer network. 
In a single layer network, a neuron computes its new activation value after re­
ceiving inputs from other neurons, and communicates the updated activation 

1 Learning is defined to be the updating of synaptic weights. 



www.manaraa.com

262 

value to neurons its output connects to. In a multilayer network, the activation 
values are communicated to the next layer. A forward pass of data from the 
input layer to the output layer, which does not involve changes of weights, is 
referred to as a recall operation or the search phase. Learning can either be 
executed in the forward pass by carrying out additional computations in the 
neurons or may require a separate pass of data in the opposite direction (as in 
the Backpropagation model). 

2.4 Learning 

Learning is defined as the modification of synaptic weights that encodes pat­
terns into the ANN. Learning can either be supervised or unsupervised. In 
unsupervised learning (eg. Hebbian Learning [9]), the weight of a link is up­
dated based on local information available to the neurons connected by the link. 
Supervised learning [35], on the other hand, requires the presence of an exter­
nal "teacher". The teacher modifies the weights based on the error between a 
desired response and the actual response to an input. 

One of the most popular learning schemes for multilayer neural networks is 
the Backpropagation Algorithm [36]. Backpropagation is a supervised learning 
mechanism which minimizes the mean squared error between the desired and 
actual output values. One of the reasons that it is often used to solve real life 
problems is that it is computationally cost effective. There are two phases to 
the Backpropagation Algorithm. In the forward p~s, the training pattern is 
input to the network and activations of the neurons are updated till the output 
emerges at the output layer. This output is compared with the desired output 
for that pattern and the error signals are propagated back through the network 
and the weights are updated. The computational complexity of the backward 
phase is the same as that of the forward phase. 

At the start of a training run, a training pattern is input to the input layer 
of the multilayer ANN. Let the actual output of the jth neuron of the output 
layer be aj. Let the desired (or target) output at that neuron be tj. Then, 
(tj - aj) defines the error fj at that neuron. In general, the change in weight 
Wij is given by: 

(4) 

where Wij is the weight of the connection from neuron j to neuron i, TJ is the 
learning rate and 8i is the error signal. The error signal is defined as follows. If 
neuron j is an output unit, then: 

(5) 

Xj is the weighted sum of inputs to neuron j and f; is the derivative of the 
activation function. The error signals for the hidden units are computed recur-
sively: 

8j = f;(xj) L:8kWki 
k 

(6) 



www.manaraa.com

263 

It should be noted that the major computation in the Backpropagation 
algorithm requires the computing of a weighted sum (Equation 6) which makes 
the structure of the computation very similar to that of the search phase. 

3 Neural Network Implementation on Proces­
sor Arrays 

Implementing sparse neural networks on parallel architectures involves a large 
amount of information to be transferred between the processors. Although the 
linear array of processors is an attractive architecture because of its simplic­
ity and availability in terms of real machines, it is not efficient for simulating 
sparse neural networks because of the restricted bandwidth of communication 
it possesses. The 2-D array of processors alleviates this problem as it has a 
higher bandwidth. In this section, we first briefly describe S. Y. Kung and J. 
N. Hwang's implementation of a fully connected neural network on a linear ar­
ray with a wrap around connection, identify its shortcomings and then describe 
the target architecture that will be used in this chapter. 

3.1 ANN Implementation on Linear Arrays 

The processing required to carry out one update of activation values for the 
general ANN models described in Section 2 can be seen to be a matrix-vector 
multiplication. Recognizing this, S. Y. Kung and J. N. Hwang have applied 
techniques for mapping iterative matrix operations onto systolic arrays to de­
velop algorithms to simulate ANN's on linear arrays [17, 18]. The architecture 
used for this implementation, along with the initial distribution of activation 
values and interconnection weights is shown in Figure 3. 

The array consists of n PE's (where n is the number of neurons in the ANN) 
which are connected to form a linear array with a wrap around connection. Each 
PE is initially assigned one activation value and has access to a local memory 
that stores all t.he weights associated with the corresponding neuron, rotated in 
the manner shown in Figure 3. The working of the array in the search phase is 
as follows. At any time step k, the activation values aj are circulated clockwise 
around the ring. When a value aj arrives at a PE i, it is multiplied by Wij and 
added to a partial sum. After O(n) time, all the products have been added. 
The activation function f is applied to this resulting sum to get a~+l. This 
process is executed repeatedly till the network has converged to a stable state. 

The above method is efficient for a small, fully-connected network (notice 
that O(n) time is required for implementing a network with n neurons). If, how­
ever, the network being implemented is large and sparsely connected, the above 
method is very inefficient. The method stores all values of weights, whether or 
not they happen to be zero. For a large, sparse network, a large proportion of 
the weights could be zero. The above method would still store all n 2 weight.s 
and carry out all computations. In such cases, only the non-zero weights need 



www.manaraa.com

264 

Win w2i W32 Wn,n-i 

• • • • • • • • 
• • • ••• • 

W12 W23 W34 Wni 
wll W22 W33 Wnn 

••• 

Figure 3: Linear Array implementation of ANN's proposed by Kung and 
Hwang. 



www.manaraa.com

265 

to be stored and computed with. This results in a saving of memory and a 
more efficient algorithm. Also, the above algorithm requires a problem depen­
dent array size of n PE's. Real machines have a fixed number of processors and 
it is important to develop algorithms for cases when the number of processors 
is smaller than the problem size (which would typically be the case). 

Although it is possible to store only the non-zero weights on a linear array, 
this requires a considerable amount of data transfer between PE's. It turns out 
that the linear array is not a very suitable architecture for this application be­
cause its limited communication bandwidth makes this data transfer expensive. 
Here, we present an efficient algorithm to implement sparse neural networks on 
a fixed size mesh of processors where it is possible to store just the non-zero 
weights and carry out the data transfers efficiently. A description of the target 
architecture is presented next. 

3.2 The Target Architecture 

The organization of the array of processors used in this chapter to implement 
ANN models is shown in Figure 4. The Architecture consists of p2 processing 
elements (PE's) connected to form a p x p two dimensional array. The archi­
tecture operates in an SIMD mode and therefore requires a host computer to 
control the operation. Communication between PE's is bidirectional and each 
PE can communicate with one of its four nearest neighbors in one time step. 
The bidirectional links are used to carry out the data routing in the array. Each 
PE has a local memory of size O«n + e)/p2) (where n is the number of neu­
rons in the network and e is the number of non-zero interconnection weights), 
a multiplier, an adder, a lookup table for computing the activation function, 
and the ability to communicate with its neighbors. For purposes of computing 
the time complexity of the algorithms in this chapter, we assume that one time 
step is either a computation or a communication step. 

The appeal of the architecture described above lies in its simplicity and its 
availability in the form of existing parallel machines. It is also possible to build 
a custom designed parallel machine based on this architecture by using off the 
shelf components. In the next section, we present the algorithm to implement 
the search phase of sparse ANN models on this target architecture. 

4 Fixed Size Arrays for Sparse ANN Imple­
mentation 

This section describes an efficient means of implementing sparsely connected 
neural networks on a fixed size 2-D array of processors. Before presenting the 
algorithm for simulating the search phase of sparse ANN's, we show how the 
non-zero connection weights and activation values are mapped onto the PE's of 
the mesh. 



www.manaraa.com

266 

Processing Element 

Figure 4: Two Dimensional Array of Processing Elements 



www.manaraa.com

267 

4.1 Mapping of Weights and Activation Values 

We assume that the ANN to be simulated has n neurons and e non-zero con­
nections. As was described in Section 3, the target architecture is a p x p mesh 
of PE's. Thus, there are (n + e) data elements to be stored between the p2 
PE's and each PE stores 0« n + e) / p2) values. To better visualize the stor­
age of data on the mesh and its processing, we can imagine the data registers 
forming a set of (n + e) / p2 'planes' of registers (Figure 5). Each of these planes 
of registers holds p2 data values. The mapping of the data onto the memory 
registers is done such that data routing can be done on a plane-by-plane basis, 
routing within each plane being equivalent to a permutation of the elements 
within that plane. This visualization helps in understanding the working of the 
algorithm and in the analysis of its complexity. 

The scheme used for mapping data onto the array is a direct result of the 
data routing requirements arising from the computation structure. Recall that 
each update of activation values comprises of the following computation: 

n 

a~+l = 1;(2: Wijaj) for 1 ~ i ~ n 
j=l 

This computation requires that a PE that stores the activation value aj at the 
end of iteration k, has to route this value to all PE's that contain non-zero 
weights from column j of the connection weight matrix W. After the activation 
values are multiplied with the weights, the products that correspond to rows 
of Ware summed. These weighted sums are then routed back to the PE that 
stores the appropriate activation value. Upon receiving the weighted sum, the 
PE applies the activation function on this value to get the new activation value, 
a~+l 

J . 

Mapping of Activation Values: As mentioned above, the routing scheme 
presented in this paper perceives the routing of data within a plane as a per­
mutation of data within that plane. Using concepts from the field of Inter­
connection Networks, we show that it is possible to simultaneously route all 
the data elements within a plane in a conflict free manner. The first step of 
the computation requires that activation values be routed to PE's that contain 
non-zero weights from the appropriate columns of W. Since all the elements in 
a plane can be routed simultaneously, the activation values to be routed during 
this first step should be spread out over the plane. Thus, activation values are 
mapped row by row onto the first plane, starting from the top left corner reg­
ister of the plane (Figure 5). If there are more than p2 activation values, more 
planes may be needed. The mapping within each subsequent plane is similar 
to the first plane. 

Initial mapping of Connection Weights: The above computation dictates 
that all PE's that store non-zero weights from column j of W must receive 
activation value aj at the end of the first routing stage. A natural deduction 
from this is that weights belonging to the same column should initially be stored 
as close to each other as possible. This will make the distribution of aj amongst 



www.manaraa.com

268 

(n +e) 

p 

p -I 
Figure 5: Stored data can be looked upon as being stored in planes of registers 



www.manaraa.com

269 

Snake like 
mapping forms 

connected region 

Figure 6: Data sets mapped onto a 2-D array form connected regions if the 
mapping is done in a 'snake-like' manner. Each shaded region represents a data 
set which forms a connected region with respect to the 2-D mesh connections. 

them easier. Thus, we first map as many weights from one column as possible 
onto one PE. If more memory is needed than is available in one PE, subsequent 
PE's are chosen such that the PE's form a 'connected region' with respect to 
the physical connections of the mesh. On a 2-D mesh, data sets form connected 
regions if they are mapped in a 'snake-like' manner onto the array (see Figure 
6). Thus if it is necessary to store weights from one column over many PE's, it 
is done in a snake-like manner, filling each PE completely before going on to the 
next. We shall define such a mapping to be a 'snake-like column major order' 
mapping. Note that weights from one column can transcend many planes. 

Later during the algorithm, it will be necessary to sum all the product 
terms that correspond to one row of Wand then, it will be required that these 
product terms form a connected region. This leads to a 'snake-like row major 
order' mapping of the product terms. Plane by plane data routing will be used 
to transform the initial snake-like column major order mapping to snake-like 
row major order mapping. 

4.2 Data Routing 

Before a description of the complete algorithm, let us consider the general 
problem of routing data within one plane of registers. During each iteration of 



www.manaraa.com

270 

the search phase, three kinds of data routing problems arise: 

1. The broadcast of aj to all elements of the lh column of the connection 
weight matrix. 

2. Transformation from a snake-like column major order distribution to a 
snake-like row major order distribution. 

3. Transportation of the sums C2=.i=1 Wijaj) to the PE's that store the acti­
vation values. 

We develop an efficient method that uses preprocessing done on the structure 
of the weight matrix to simultaneously route all the data within a plane in O(p) 
time [24]. We describe the. technique to be used to route data before we look 
at how each individual routing problem is solved. 

The problem of data-transport among registers in a plane is essentially that 
of realizing a permutation of the elements contained in the registers. More 
formally, if register Rij has to send data Dij to Ri.j., then the permutation 
to be realized is 7r : (i, j) -+ (i*, j*). An approach towards realizing such a 
permutation is to apply the following two steps. In the first step, the elements 
are moved within their columns till they are in their respective destination 
rows. In the second step, the elements are moved within their rows till they 
are in their destination registers. This method, however, could result in many 
elements accumulating in one register at the end of the first step (eg. jf all 
the elements of a column-have the same destination row, they will all end up 
in the same register). To avoid this kind of congestion, the elements are first 
permuted within their rows in such a manner that when the permutations along 
the columns are carried out, no two elements end up in the same register [30]. 

The 'three-phase' routing method can therefore be described as follows: 
Phase I: 
Permute the elements within their rows so as to avoid congestion in Phase 

II. 
Phase II: 
Permute the elements within columns so as to get them to their destination 

rows. 
Phase III: 
Permute the elements within their destination rows so as to get them to 

their final positions. 
Three-phase routing of data is pictorially represented in Figure 7, which can 

be identified as the elos Interconnection Network [2], [3]. 
The rectangular boxes in the figure represent a permutation of a particular 

row or column in the plane. For the above routing scheme to be able to realize 
any permutation of elements, each of the row and column sub-permutations 
should be able to realize any desired rearrangement. This is indeed possible in 
2p steps (for a row permutation: p steps are sufficient to move data that have 
destinations to their right and p steps are sufficient for left movements). The 
overall routing process therefore takes 6p steps. 



www.manaraa.com

Phase I 
Row 

Permutation 

Phase II 
Column 

Permutation 

Figure 7: Permuting the contents of the PE's 

271 

Phase III 
Row 

Permutation 



www.manaraa.com

272 

Each phase of routing requires one routing register per data element which 
contains the distance the element has to be moved in that row/column and in 
which direction. We shall assume that positive numbers represent movement 
to the right (downward movement for a column) while negative numbers rep­
resent movement to the left (upward movement for a column). Each piece of 
data therefore has three routing registers associated with it: RR/, RR/I and 
RR/I/. The computation of the routing tags of data in one plane can be done 
in O(p2[logpj2) time on a serial computer [19] and in O(p) time on a p x p mesh 
connected computer [27]. 

Using the above concepts, we develop a procedure called PHASE which 
instructs each PE to move data in parallel to one of its nearest neighbors de­
pending on the phase being run. Another procedure, ROUTE, calls PHASE 
three times, once for each phase of the routing. Details of these procedure can 
be found in [24]. Using these procedures, the broadcast, re-distribution and 
update problems are solved as follows. 

A. BROADCAST 
At compile-time, given the sparse connection matrix (W), the mapping of the 
non-zero elements onto the memory array in snake-like column major order is 
computed. This gives the connected regions in the array. An element of ii has 
to be broadcast to each of these connected regions. To do this, a leader PE 
is identified in each connected region and the element of ii is transported to 
it using the procedure ROUTE on the planes that contain activation values. 
If the leader PE of two regions coincide, a pseudo leader is chosen for one of 
the columns and the corresponding activation value is routed to that PE. This 
part of BROADCAST is completed in 6p time steps. The leader PE is either 
the leftmost or the rightmost PE of the top row of the connected region. The 
leader PE has two limit registers associated with it, one indicating how far the 
connected region extends along its row and the other showing how far down 
along its column the region extends. The data in the leader PE can be copied 
into all the PE's in the connected region in three stages. In the first stage, the 
data is moved to PE's in the same column within the connected region. In the 
second stage, data is broadcast to connected PE's in the same row and finally, a 
third stage broadcasts to connected PE's in the same column again. Each stage 
can take up to 2p time and so the total time required for copying data within a 
connected region is ~ 6p. The procedure BROADCAST, therefore, consists of 
calling the procedure ROUTE on the planes containing elements of ii and then 
carrying out the data movement described above. The time required for one 
such broadcast operation is ~ 12p. 

After the PE's receive the appropriate elements of ii, the PE's compute the 
products Wij * aj. 

B. RE-DISTRIBUTE 
The problem can be stated as follows: 



www.manaraa.com

Given a distribution of elements in snake-like column major order, 
re-distribute them in snake-like row major order. 

273 

At compile-time, the sparse connection weight matrix (W) is available. The 
mapping of the non-zero entries in snake like column major order as well as in 
snake like row major order can therefore be computed. The routing problem is 
then reduced to realizing a plane-by-plane permutation of the contents of the 
PE's that converts the distribution from one to the other. This permutation is 
realized using the three phase routing technique described above. If, during the 
preprocessing, it is determined that two or more data elements have the same 
destination register as part of the routing within a plane, the ordering of data 
in a PE can be changed to avoid this. 

The procedure RE-DISTRIBUTE is quite similar to ROUTE. Due to the 
similarities of the procedures, details are omitted. The time required for RE­
DISTRIBUTE is 6p per plane. Since there are O«n + e)jp2) planes, this leads 
to a total time of O«n + e)jp). 

c. UPDATE 
The solution of this problem is similar to the solution of the broadcast problem. 
During preprocessing, when the snake-like row major ordering of the non-zero 
entries is computed, the leader PE's of the connected regions so formed are also 
determined. The sums of the connected regions come to these leader PE's and 
so it is known beforehand which PE's have to send data to the PE's storing 
the components of a. The routing registers of these PE's are set accordingly. 
The procedure UPDATE first forms the weighted sums and gets them to the 
leader PE's. These weighted sums are then routed to the appropriate PE's 
using ROUTE and the components of a are updated by the application of the 
function f. It is easy to verify that the time required for UPDATE is :::; 12p. 

4.3 Complete Algorithm for the Search Phase 

The complete algorithm to update activation values of the neurons of a sparsely 
connected neural network is presented in this section. The procedures described 
in Section 4.2 are used in the algorithm. In the pre-processing stage shown in 
Figure 8, the processor array is set up to perform the iterations. The iterations 
are performed as shown in Figure 9. The analysis of the time performance 
of the procedures in Section 4.2 shows that the complete algorithm runs in 
O«n + e)jp) time. 

The algorithm presented in this chapter is general enough to handle any 
computation that requires the repeated multiplication of a sparse matrix with 
a vector. Since a number of learning mechanisms like the Delta Rule and 
Backpropagation can be re-written as matrix-vector operations, the algorithm 
can be modified to implement them on fixed size arrays too. 



www.manaraa.com

274 

1. Compute the mapping of the non-zero elements of W onto the processor array 
in snake like column major order and store it. 

2. Identify the 'leader' PE's in the connected regions formed in Step 1. Set the 
limit registers in these PE's to define the boundaries of the connected regions. 

3. Compute the mapping of the non-zero elements of W onto the processor array 
in snake like row major order and store it. 

4. Identify the leader PE's in the connected regions formed in Step 3. Set the limit 
registers in these PE's to define the boundaries of the connected regions. Set 
the routing registers of the PE's that correspond to the update step so as to get 
these data to the PE's storing the activation values. 

5. Store initial activation values aO in the manner defined in Section 4.1. Compute 
the routing tags to route these elements to the leader PE's identified in Step 2 
and store them in the routing registers corresponding to the broadcast step. 

6. Map the non-zero elements of W onto the array in snake like column major 
order according to the mapping computed in Step 1. Compute the routing tags 
for these PE's so as to achieve a permutation from the mapping in Step 1 to the 
mapping in Step 3. 

Figure 8: Preprocessing Steps 



www.manaraa.com

repeat 

1. 

2. 

3. 

275 

Broadcast the activation values using the procedure BROAOCAST. Rout­
ing registers detennine which PE's the values go to. The products of the 
activation values and the weights are computed. 

Use RE-DISTRIBUTE on each plane of registers to transfonn the distri­
bution to snake-like row major order. 

Use UPDATE to add the products and route them to the PE's storing the 
activation values. These PE's then update the activation values by apply­
ing the activation function on the weighted sum. 

until (the network converges). 

Figure 9: Iterations to update Activation Values 

5 Conclusion 

The two dimensional array of processors has a simple inter connectivity pattern 
that makes it amenable to VLSI implementation. A number of real machines 
based on this architecture are currently available. Also, it is possible to con­
struct a custom designed parallel machine based on this architecture by using 
off the shelf components. Thus, it is important to develop efficient algorithms 
to solve problems on a two dimensional mesh of processors of fixed size. The 
two dimensional connectivity provides a higher bandwidth of communication as 
compared to the limited bandwidth available on the linear array. This makes 
the two dimensional array a better target architecture for applications that 
require a large volume of data to be transferred between processors. 

One such application is the implementation of sparse neural networks. This 
chapter has presented an efficient algorithm for carrying out the search phase 
computations of a sparse neural network on a fixed size mesh of processors. 
One iteration of activation value updates for a network with n neurons and 
e non-zero connection weights takes O((n + e)/p) time on a p x p array of 
processors. Each PE of the array contains a multiplier, an adder and O( (n + 
e )/p2) local storage. Preprocessing is carried out on the connection weight 
matrix which results in efficient data routing within the array. Concepts from 
the field of Interconnection Networks are used to prove that routing can be done 
in a conflict free manner. 

The algorithm presented in this chapter is general enough to be applied to 
any sparse neural model where the search or learning phase computation can 
be described as a product of a matrix with a vector. Since a number of neural 



www.manaraa.com

276 

models fall into that class, our method will be effective for all of them. 

References 

[1] R. Altes. Unconstrained minimum mean-square error parameter estimation 
with Hopfield networks. In International Conference on Neural Networks, 
volume II, pages 541-548, 1988. 

[2] V. E. Benes. On Rearrangeable Three Stage Connecting Networks. 
B.S. T.J., 41:117-125, Sept. 1962. 

[3] C. Clos. A Study of Non-Blocking Switching Networks. B.S. T.J., 32:406-
424, 1953. 

[4] K. I. Diamantara, D. L. Heine, and I. D. Scherson. Implementation of 
neural network algorithms on the p3 parallel associative processor. In 
International Conference on Parallel Processing, volume I, pages 247-250, 
1990. 

[5] L. Fu. Adaptive signal detection in noisy environments. The Journal of 
Neural Network Computing, Spring Issue, pages 42-50, 1990. 

[6] R. Gorman and T. Sejnowski. Analysis of hidden units in a layered network 
trained to classify sonar targets. Neural Networks, 1:75-89, 1988. 

[7] R. Gorman and T. Sejnowski. Learned classification of sonar targets using 
a massively parallel network. In IEEE Transactions on Acoustics, Speech, 
and Signal Processing, volume ASSP-36, pages 1135-1140, 1988. 

[8] Dan Hammerstrom. A VLSI architecture for high-performance, low-cost, 
on-chip learning. In International Joint Conference on Neural Networks, 
volume II, pages 537-544, 1990. 

[9] D. O. Hebb. The Organization of Behavior. Wiley, New York, 1949. 

[10] R. Hecht-Nielsen. Neural network nearest matched filter classificaton of 
spatio-temporal patterns. Applied Optics, 26:1892-1899, 1987. 

[11] J. J. Hopfield. Neural networks and physical systems with emergent col­
lective computational abilities. Proceedings of the National Academy of 
Science, U.S.A., 79:2554-2558, 1982. 

[12] J. J. Hopfield. Neurons with graded response have collective computational 
properties like those of two-state neurons. Proceedings of the National 
Academy of Science, U.S.A., 81:3088-3092, 1984. 

[13] S. Jha, C. Chapman, and T. Durrani. Investigation into neural networks 
for bearing estimation. In J. Lacoume, A. Chehikean, N. Mart yin, and 
J. Malbos, editors, Signal Processing IV: Theories and Applications. Else­
vier Science Publishers, London, 1988. 



www.manaraa.com

277 

[14] M. S. Tomlinson Jr., D. J. Walker, and M. A. Sivilotti. A digital neural 
network architecture for VLSI. In International Joint Conference on Neural 
Networks, volume II, pages 545-550, 1990. 

[15] A. Khotanzad, J. Lu, and M. Srinath. Target detection using a neural 
network based passive sonar system. In International Joint Conference on 
Neural Networks, volume I, pages 335-340, 1988. 

[16] H. T. Kung, D. A. Pomerleau, G. L. Gusciora, and D. S. Touretzky. How 
we got 17 million connections per second. In International Conference on 
Neural Networks, volume 2, pages 143-150, 1988. 

[17] S. Y. Kung. Parallel Architectures for Artificial Neural Nets. In Interna­
tional Conf. on Systolic Arrays, pages 163-174, 1988. 

[18] S. Y. Kung and J. N. Hwang. A Unified Systolic Architecture for Artificial 
Neural Nets. Journal of Parallel and Distributed Computing, 6:358-387, 
1989. 

[19] G. Lev, N. Pippenger, and L. Valiant. A fast parallel algorithm for routing 
in permutation networks. IEEE Transactions on Computers, C-30(2):93-
100, Feb. 1981. 

[20] R. Lippman and B. Gold. Neural classifiers useful for speech recognition. In 
International Conference on Neural Networks, volume IV, pages 417-426, 
1987. 

[21] R. P. Lippman. An Introduction to Computing with Neural Nets. IEEE 
ASSP Magazine, pages 4-22, April 1987. 

[22] A. Maccato and R. de Figueiredo. A neural network based framework 
for classification of oceanic acoustic signals. In Proceedings of Oceans '89, 
Seattie, pages 1118-1123, 1990. 

[23] W. S. McCulloch and W. H. Pitts. A logical calculus of the ideas immanent 
in nervous activity. Bull. Math. Biophys., 5:115-133, 1943. 

[24] Manavendra Misra and V. K. Prasanna Kumar. Efficient VLSI Implemen­
tation of Iterative Solutions to Sparse Linear Systems. In J. McCanny, 
J. McWhirter, and E. Swartzlander Jr., editors, Systolic Array Processors, 
pages 52-61. Prentice Hall, 1989. Proceedings of the 3rd Int. Conf. on 
Systolic Arrays. 

[25] Manavendra Misra and V. K. Prasanna Kumar. Massive Memory Orga­
nizations for Implementing Neural Networks. In International Conference 
on Pattern Recognition, June 1990. 

[26] Manavendra Misra and V. K. Prasanna Kumar. Neural network simulation 
on a Reduced Mesh of Trees organization. In SPIE/SPSE Symposium on 
Electronic Imaging, Feb. 1990. 



www.manaraa.com

278 

[27] David Nassimi and Sartaj Sahni. Parallel Algorithms to set up the Benes 
Permutation Network. IEEE Transactions on Computers, C-31(2):148-
154, Feb. 1982. 

[28] K. W. Przytula and V. K. Prasanna Kumar. Algorithmic mapping of neural 
networks models on parallel SIMD machines. In International Conference 
on Application Specific Array Processing, 1990. 

[29] K. W. Przytula, W-M. Lin, and V. K. Prasanna Kumar. Partitioned im­
plementation of neural networks on mesh connected array processors. In 
Workshop on VLSI Signal Processing, 1990. 

[30] C. S. Raghavendra and V. K. Prasanna Kumar. Permutations on ILLIAC­
IV Type Networks. IEEE Transactions on Computers, C-37(7):622-629, 
July 1986. 

[31] U. Ramacher and J. Beichter. Systolic Architectures for Fast Emulation of 
Artificial Neural Networks. In J. McCanny, J. McWhirter, and E. Swartz­
lander Jr., editors, Systolic Array Processors, pages 277-286. Prentice Hall, 
1989. Proceedings of the 3rd Int. Conf. on Systolic Arrays. 

[32] Sanjay Ranka. A distributed implementation of backpropagation. 
Manuscript, Department of Computer Science, Syracuse University, 1990. 

[33] Sanjay Ranka, N. Asokan, R. Shankar, C. K. Mohan, and K. Mehrotra. 
A neural network simulator on the Connection Machine. In Fifth IEEE 
International Symposium on Intelligent Control, 1990. 

[34] R. Rastogi, P. Gupta, and R. Kumeresan. Array signal processing with 
inter-connected neuron-like elements. In International Conference on 
Acoustics, Speech, and Signal Processing, pages 54.8.1-4, 1987. 

[35] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal 
representations by error propagation. In Parallel Distributed Processing: 
Exploration in the Microstructure of Cognition, volume 1, chapter 8, pages 
318-362. MIT Press, Cambridge, Massachusetts, 1986. 

[36] D. E. Rumelhart, J. L. McClelland, and the PDP Research Group. Parallel 
Distributed Processing: Exploration in the Microstructure of Cognition, 
volume 1. MIT Press, Cambridge, Massachusetts, 1986. 

[37] Soheil Shams and K. W. Przytula. Mapping of neural networks onto pro­
grammable parallel machines. In International Symposium on Circuits and 
Systems, May 1990. 

[38] P. Simpson. Artificial Neural Systems: Foundations, Paradigms, Applica­
tions and Implementations. Elmsford Press: Pergamon Press, 1990. 

[39] Planning Systems. Sonar classification with neural networks. NeuralWare 
Connections, 1(1), 1989. 



www.manaraa.com

279 

[40] S. Tomboulian. Introduction to a system for implementing Neural Net 
connections on SIMD architectures. Technical Report ICASE No. 88-3, 
Institute for Computer Applications in Science and Engineering, NASA 
Langley Research Center, January 1988. 

[41] B. W. Wah and L-C. Chu. Efficient mapping of neural networks on multi­
computers. In International Conference on Parallel Processing, volume I, 
pages 234-238, 1990. 

[42] T. Watanabe, Y. Sugiyama, T. Kondo, and Y. Kitamura. Neural Network 
Simulation on a Massively Parallel Cellular Array Processor: AAP-2. In 
International Joint Conference on Neural Networks, June 1989. 

[43] Stephen S. Wilson. Neural computing on a one dimensional SIMD array. 
In International Joint Conference on Artificial Intelligence, pages 206-211, 
1989. 

[44] X. Zhang, M. McKenna, J. P. Mesirov, and D. Waltz. An Efficient Imple­
mentation of the Backpropagation Algorithm on the Connection Machine 
CM-2. In NIPS, 1989. 



www.manaraa.com

INDEX 

Actor, 159, 173, 182 

Adaptive Filtering, 214 

Asynchronous Design, 192-233 

Back propagation, 232, 257, 273 

Bewrr.rronr.Ung, 77, 256 

Biological model, 258 

Bus cycle, 35 

Checksum Encoding, 95 

Cholesky factor, 80 

Complete Signal, 195, 212 

Computed Tomography 

Fan Beam Computation, 115 

Fan Beam Architecture, 117 

Complete Signal, 195, 212 

Connection Machine, 63, 230, 257 

Continual Feeding, 197, 199 

Convolution 

2D, 3 

Static, 6, 13 

Cray-2, 64 

Cube 

Interconnection function, 52 

DCVSL, 195, 206, 211, 219 

DDMI, 161 

Data Driven Processor, 161 

Dataflow, 159-168 

Data routing, 269 

Deadlock, 175, 176 

Deconvolution - 2D, 3 

Delay insensitive circuits, 193 

Delta Rule, 273 

Dolby, 165, 166, 170 

Dual Rail, 205 

Error Detection 

Concurrent , 90 

Robust, 98 

Fault Diagnosis, 94 

Fault Tolerance 

Algorithm-based, 77 

Fault Model, 89 

FFT 

Decimation in time, 50 

Decimation in frequency, 50 

Parallel, 49 

FIR Filter, 182, 183 

Feed forward buffer, 179 

Full-handshake, 201 

Gabriel, 172, 176, 182 

Gatekeeper, 166, 167 

Guarded command, 198 

Half-handshake, 201 

Handshaking, 179, 193-197 

Homogenous SDF, 177, 178 

Hopfield networlc, 243 

Huffman model, 193 

Image 

Distortion, 3 

Processing, 1 

Restoration, 1, 4 

Interconnection modules, 196 

I-structure, 159, 173 

Iteration period bound, 177 



www.manaraa.com

282 

LAO, 161 

Latency 

Processing, 100 

Error Propagation, 100 

Recovery, 100 

Lattice filters, 218, 221 

Least mean squares, 215 

MCPS, 247 

MOMO, 167, 169-171, 185 

Manchester carry chain, 214 

Manifest iteration, 176, 179, 184 

Mapping 

Space-time, 139 

MCPS, 247 

Mesh-of-Pyramids, 1, 10 

Mesh-of-Trees, 118, 257 

Metastability, 193 

Micro controllers, 54 

Multilayer perception, 231, 229 

Multi-Step Iteration, 19-23 

Nettalk, 244 

Neural Networks 

Feedback, 243 

Layered feed forward, 242 

Sparse, 255 

ONERNCERT, 161 

Optical Switch, 36 

Ordered memory architecture, 174, 
179, 181 

PASM,54 

Parallelizing compiler, 175, 185 

Perfect Shuffle, 33 

Perfect synchronous design, 220 

Permutation 

Affine, 129 

Routing problem, 134 

Prescheduled, 139 

Persistence, 200 

Petit Cycle, 35 

Petri-nets, 198, 200 

Place-determinate, 7 

Precedence graph, 175 

Precondition, 198 

Pyramid of Meshes, 1 

Quasi-static scheduling, 185 

Recurrence Equation, 132 

Reference coUnts, 173 

Relations 

Binary, 132 

Transfer, 140 

RegUlarization Parameter, 4 

Request signal, 195 

Runaway condition, 197 

SDF, 174 

Scheduling 

Fully dynamic, 159-168 

Fully Static, 159-168 

Self timed, 159-168 

Static allocation, 159-168 

Self timed circuit, 193, 208 

Semaphore, 164-166 

Semelective, 7 

Semi-modularity, 199 

Separators, 177 



www.manaraa.com

Shared data structures, 173 

Shuffle Busses, 119 

Sidelobe Canceller, 78 

Synchronous design, 192,220-223 

Systolic architectures, 256 

Tagged token, 161 

Testing Circuitry, 219 

Token store, 161 

V-interpreter, 176 

VLSI, 1, 2 

VME, 192, 193 

Vectorized filter, 214, 221 

WARP, 230, 237, 257 

Wallace tree, 210 

Weakest condition, 199 

Word-Local, 7 

Word-Serial, 7 

283 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [439.370 666.142]
>> setpagedevice




